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Executive Summary 

The work presented in this report was performed by the Carnegie Mellon® Software Engineering 
Institute (SEI) for the Army Strategic Software Improvement Program (ASSIP) and sponsored by 
the Army Program Executive Office (PEO) Aviation. This report presents a Virtual Upgrade 
Validation (VUV) approach to improving design quality and confidence in qualification through 
testing for military systems impacted by computer platform upgrades. This approach uses 
architecture-centric, model-based analysis to identify system-level problems early in the upgrade 
process to complement established test qualification techniques. For purposes of this report, the 
authors focus on changes to the computer platform consisting of processor, network, operating 
system, or runtime infrastructure.  

Helicopters and airplanes in military use today are operational well beyond their original life 
spans and typically are facing multiple platform upgrades as part of technology refresh cycles. 
Changes to the computer platform tend to be particularly risky because the embedded software 
makes many assumptions about the computer system. For example, software may have been 
developed for a federated architecture in which each software component is assumed to run on a 
dedicated, special processor using a cyclic executive as its runtime executive. The static nature of 
the task execution order may not be guaranteed on other computer platforms, affecting the 
execution order and timing. The emergence of the Integrated Modular Avionics (IMA) 
architecture provides the benefit of increased flexibility for growth of mission capability by 
utilizing a distributed computer system as a common computing platform. However, migration to 
this computer resource can have side effects not anticipated by the original embedded software 
application. For example, applications originally scheduled using a cyclic executive may now 
execute based on preemptive scheduling paradigms. As a result, the various control systems in the 
aircraft may encounter latency jitter and race conditions, due to nondeterministic sampling, that 
are difficult to detect through testing techniques. In one such case, the pilot experienced random 
blurring of the tracking symbol on his display screen due to latency jitter, which was traceable to 
nondeterministic sampling under certain processor load conditions [Feiler 1998]. This example 
illustrates that even planned upgrades to well-known standards-based architectures, such as 
Aeronautical Radio Incorporated (ARINC)653, can have impactful, unintended side effects. 

The U.S. Army has traditionally qualified systems and components by similarity, analysis, test, 
demonstration, or examination. Furthermore, current test approaches to achieving confidence in 
systems’ airworthiness for the U.S. Army are based on traditional federated avionics systems 
[Boydston 2009]. The most common approach to dealing with platform change today is to port 
the code to the new platform and regression test exhaustively. Testers hope that the regression 
tests provide sufficient coverage for discovering time-sensitive faults as observable defects. 

The migration to IMA architectures, the exponential growth in software size and complexity, the 
increased role of software in the system, and the increasing pace of changes have introduced new 
hazards [Leveson 2004] that the current “build then test” approach struggles to detect—leading to 
testing until budgets are exhausted or the testers have run out of testing time. While extensive 

 
®  Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University. 
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regression testing is a key part of the verification process for platform changes, regression testing 
alone is not effective in achieving the desired level of confidence when embedded software is 
executing in an integrated system.  

As a recent study of best practices and the state of the art has concluded, advances in architecture 
research offer a way of addressing this problem [Feiler 2008b]. The VUV method, presented in 
this report, uses an industry standard modeling notation, the SAE International1 Architecture 
Analysis and Design Language (AADL), and leverages its well-defined semantics in a model-
based approach to analyze the impact of platform-related changes [SAE 2004].  

The value of the VUV approach is that it helps military programs improve design quality and 
testing efficiency, and it enables the early discovery of problems for platform-related software 
changes. The VUV approach improves the quality of the design because it models the specific 
changes related to the platform change, rather than involving testers who run a suite of regression 
tests until they feel they have probably covered everything. This approach increases confidence in 
the design changes and prevents unintended side effects from popping up in the test phase. The 
VUV method improves the efficiency of qualification testing in this way: an architecture model 
that is developed for analysis and evaluation early in the software life cycle incrementally evolves 
to reflect platform upgrades. Developers can thus analyze models’ upgrade alternatives at design 
time, rather than waiting for an implementation to be tested on the new platform. Finding 
problems early reduces rework, which shortens the testing qualification cycle and reduces 
development cost and schedule [Feiler 2009a].  

The VUV method has been applied in a pilot project to analyze the impact of a platform upgrade 
on the software for an Apache helicopter. The application of the VUV method and the findings of 
this pilot project will be the subject of a separate report. 

 
1  SAE international was formerly known as the Society of Automotive Engineers. 
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Abstract 

This report presents a Virtual Upgrade Validation (VUV) method to improve design quality and 
confidence in qualification through testing for military systems impacted by computer platform 
changes. This approach uses of architecture-centric, model-based analysis to identify system-level 
problems early in the upgrade process to complement established test qualification techniques. 
For purposes of this report, the authors focus on changes to the computer platform consisting of 
processor, network, operating system, and runtime infrastructure. They describe the VUV method 
steps and introduce the Architectural Dependencies Catalog, which provides guidance for 
modelers on which aspects of the system to model and how to model them. The report also 
provides a history and overview of the Architecture Analysis and Design Language standard, 
which is used with the VUV method.  
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1 Background 

This section provides background on the SAE International2 Architecture Analysis and Design 
Language (AADL) standard, which is the standard of the proposed Virtual Upgrade Validation 
(VUV) method. This section provides a brief history of the standard, an overview of the standard, 
some research work by the Carnegie Mellon® Software Engineering Institute (SEI) that feeds into 
the proposed method, and industry initiatives that are utilizing the AADL standard.  

In the 1990s, the Defense Advanced Research Projects Agency (DARPA) invested in software 
architecture research because it recognized the need to understand increasing system complexity 
in terms of software and hardware component interactions. During that time, several architecture 
description languages emerged; these had well-defined semantics to support quantitative analysis 
of a range of operational quality attributes.3 In particular, MetaH was developed by the Honeywell 
Technology Center for use on avionics systems and for the first time applied to a missile guidance 
system at the Army Missile Research, Development, and Engineering Center (AMRDEC) in 
1994. The success of this research, combined with the need felt by the Avionics/Aerospace 
industry, resulted in the development of the SAE AADL as an international industry standard. 
Following its initial publication in November 2004, the standard underwent revision in January 
2009 and January 2011, based on feedback from several industrial pilot projects [SAE 2004, 
2009, 2011].  

The focus of the AADL standard is to support architecture modeling, quantitative analysis, and 
validation of embedded software systems. In particular, AADL defines a set of concepts with 
well-defined semantics for describing the task and communication architecture of the embedded 
software, the computer system platform, and the interface to the system and its environment, such 
that the operational quality attributes that are crucial for embedded real-time system (such as 
timing, throughput, safety, and reliability) can be analyzed. Furthermore, the standard suite 
includes a standardized interchange format that supports the interfacing of various analysis tools 
and exchange of AADL models between different development teams such as the system 
integrator and its suppliers. Because AADL is an embedded-system-specific architecture 
description standard with well-defined semantics, developers do not interpret AADL models 
differently and thus avoid communication mismatches.  

Due to continued interest in learning the reasons for system failure, in 2007 and 2008 the SEI 
investigated the following question: “Why do system-level failures still occur despite our best 
design methods and fault tolerance techniques being deployed in systems?” In this study, the SEI 
examined several system-level failures in a variety of safety-critical systems in the aviation and 
space domain. Feiler identified four architectural root cause areas for these failures [Feiler 2009b]:  

1. end-to-end flow of time-sensitive data  

 
2  SAE International was formerly known as the Society of Automotive Engineers. 

® Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.  

3  Operational quality attributes (OQAs) describe nonfunctional properties of the software system, such as 
performance, safety, and reliability, as they relate to runtime concerns. OQAs will be discussed later in this 
report. 
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2. distributed communicating of state machines 

3. virtualized resources  

4. resource availability  

The study also investigated an appropriate architecture-modeling notation and analytical 
frameworks that support discovery of such problems through an architecture-centric, model-based 
approach early in the development and upgrade process [Feiler 2010, Feiler 2008a, de Niz 2008b, 
Hansson 2008, Mohan 2009]. The information gained in these studies was central to developing 
the method documented in this report. 

Recent studies confirm that a paradigm shift towards analysis and formal validation at the 
architecture level to complement testing must occur to meet the challenges of time-sensitive, 
software-reliant systems with high safety and reliability demands: 

• General Accounting Office (GAO) Space-Based Software Study highlighting the reality of 
more testing than planned (exhausting versus exhaustive testing) due to the increasingly 
complex interactions between system components [GAO 2008] 

• NASA Software Complexity Study on flight software growth and complexity, and the need 
for integration of fault prevention, detection, and containment with nominal system operation 
[NASA 2009a]   

• Leveson Study on the role of software in spacecraft accidents [Leveson 2004] 

• National Research Council (NRC) Study by the Committee for Certifiably Dependable 
Software Systems addressing the issue of sufficient evidence for software for dependable 
systems through analysis and formal validation [Jackson 2007] 

The Army Strategic Software Improvement Program (ASSIP) organization became interested in 
AADL in 2007. ASSIP formed an Integrated Product Team to research problems and solutions for 
real-time, safety-critical, embedded (RTSCE) systems and invited the SEI to give a presentation 
on the benefits of AADL. In that presentation, Peter Feiler stated that AADL modeling could help 
in finding problems early in complex, embedded software.  

The SEI then followed with an ASSIP-funded study of the state of best practice and emerging 
technology to support model-based engineering of embedded systems [Feiler 2008b]. 
Recognizing the need for predictive architectural analysis, a number of industry initiatives using 
AADL have invested in the development of an architecture-centric, model-based approach to 
engineering their software-reliant systems. This trend has culminated in an aerospace industry-
wide, four-phase practice improvement initiative called System Architecture Virtual Integration 
(SAVI). The U.S. Army has been a participant in this initiative, which in 2009 completed the 
proof of concept phase [Feiler 2009a]. In addition, NASA funded an SEI AADL IV&V study that 
provides support artifacts such as templates for analysis reports and process scripts [NASA 
2009b].  

Data from member companies of SAVI, such as Boeing, Airbus, and Lockheed Martin, show that 
the size of source lines of code (SLOC) has doubled every four years and it is predicted that by 
2014 the cost of 27 million SLOC of software will exceed $10 billion. Industry data shows that 
70% of faults are introduced early in the life cycle, while 80% of faults are not caught until 
integration test or later. These faults carry a repair cost of 110 times or more at system operation 



 

3 | CMU/SEI-2012-TR-005 

than if they had been caught early in the life cycle. If we can discover a portion of these late 
system-level faults earlier in the development process, we can expect considerable cost savings 
[Feiler 2009a]. Figure 1 shows percentages of fault introduction, discovery, and cost of repair 
[Feiler 2009a]. 

 

Figure 1-1: Late Discovery of System-Level Problems 

The benefits described above, along with findings from other workshops and reports, ultimately 
led to ASSIP’s decision to support this work on behalf of the Army Program Executive Office 
Aviation (PEO-AVN). The work consists of the development of the VUV method, the subject of 
this report, and its pilot application to an Army aviation system.  

The Apache Block Upgrade III (AB3) was the chosen candidate for an initial VUV case study. 
This study illustrates the value of model-based engineering (MBE) with AADL in the context of 
architecture assessments and evaluations; models developed during the MBE activities of an 
Architecture Tradeoff Analysis Method® (ATAM®) assessment of AB3 were reused in the VUV 
case study. This MBE/ATAM case study is the subject of the SEI special report SEI-SR-021-2008 
to the Army, titled An AADL-Based Analysis of Apache, in December 2008.  

The AADL, along with compatible MBE tool suites such as the SEI Open-Source AADL Tool 
Environment (OSATE), provides the means to investigate ATAM risk themes through realistic 
modeling and analyses of complex architectures and the means to explore and evaluate various 
risk reduction/mitigation paths and multiple solutions to prioritized stakeholder scenarios. AADL 
MBE provides the system project office or prime contractor with powerful and cost/schedule-
effective methods to model and evaluate multiple design solutions early in the design—reducing 
technical risk, high cost, and schedule delay due to late discovery of system-level problems. 

The VUV method focuses the AADL-based MBE approach used during the ATAM specifically to 
investigate potential issues arising from a migration to a new computing platform during a 
technology refresh. The case study application of VUV to AB3 allows us to illustrate the ability to 

 
®  Architecture Tradeoff Analysis Method and ATAM are registered in the U.S. Patent and Trademark Office by 

Carnegie Mellon University. 
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discover, through analysis of an AADL model, system-level problems that are traditionally 
discovered through prototype implementation at much higher cost. In addition, both the AB3 
Program Office and its prime contractor have been utilizing the AB3 AADL model, study data, 
and available MBE tool suites to perform their own studies of the AB3 architecture. 
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2 Introduction 

This report is the first in a series of three reports developed by the SEI for the ASSIP and 
sponsored by the Army PEO AVN. This first report introduces readers to the VUV method, which 
is an approach to analyzing the impact on software due to platform-related changes. The second 
report is a case study that applies the method described in this report to a successfully fielded 
Army avionics system. The third report summarizes the outcome of the case study and provides 
an assessment of the value of the VUV method to the program. 

The purpose of this report is to document a method for analyzing the impact of changes to 
software due to platform changes. This is a serious concern for Army avionics in large part 
because aircraft remain in use for a very long time, often much longer than anticipated. Therefore, 
it is likely that over a 20+-year life span, part of the platform (hardware, network, or underlying 
architecture) will require replacement multiple times. For the purposes of this report, the authors 
define platform changes as changes to hardware, network, and operating system (i.e., changes in 
the computational infrastructure). 

The migration to Integrated Modular Avionics (IMA) architectures, the exponential growth in 
software size and complexity, the increased role of software in systems, and the increasing pace of 
changes have introduced new hazards [Leveson 2004] that the current “build then test” approach 
struggles to detect before operation—leading to testing until budgets are exhausted [Boydston 
2009].  

This “build then test” approach to dealing with the impact of platform change today is to port the 
code to the new platform, compile it, fix any problems caused by the hardware replacement, and 
then regression-test exhaustively. After the code is ported, testers run extensive suites of 
regression tests in an attempt to identify problems during the test phase rather than in flight. What 
the testers are really trying to do is to see if they can hammer the system with test cases in hopes 
that internal problems show up as observable defects. While widespread in practice, this approach 
is extremely resource-intensive and struggles to discover sources of system-level failure, such as 
race conditions, unintended resource contention, and unexpected latency jitter. The result can be 
rework or, worse, undetected problems that unpredictably show up in operational flight.  

One of our goals for the VUV method is to discover errors that testing might miss. Rather than 
calling for a suite of regression tests to be run until testers feel they have probably covered 
everything, the VUV approach models the specific architectural changes related to the platform 
change. The use of modeling increases confidence in the design and prevents unintended side 
effects from popping up in the test phase.  

Another benefit from the VUV method that improves design quality for embedded systems 
changes is that the AADL allows for very precise modeling of the environment on an extremely 
fine-grained scale, as needed to examine root cause areas. The VUV method uses the AADL to 
develop models that describe the dependencies of the embedded application software on the 
computer system with well-defined semantic meaning that enables automated analysis. The 
semantics of the language guide the designer to refine architectural abstractions as necessary to 
identify omissions and mismatches in these dependencies. Both the automated analysis and the 
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precise semantics enabled by AADL models have been recognized by the academic research 
community [Hugues 2008, Delange 2008, Sokolsky 2006, 2009] and by industry circles [Feiler 
2009a, LaCerte 2007, Conquet 2008, Casteres 2008] as key strategies in reducing errors. Precision 
in modeling is essential for analyzing changes at the embedded software layer because small 
changes can have significant ramifications. 

Another problem with relying on regression testing alone to analyze the impact of platform-
related change is that testers have to wait until the system is built to test it. This is too late, 
according to engineers at the U.S. Army AMRDEC Aviation Engineering Directorate (AED). 
Boydston describes the situation [Boydston 2009]. 

Waiting until Preliminary Design Review (PDR) is too late to start addressing these 
considerations and may require redesign later or onerous testing during qualification that is 
costly in monetary and schedule terms.  

The model-based approach of VUV not only addresses the impact of upgrades analytically, but 
also leads to continued use of the resulting system architectural models. The idea is that once you 
have invested in developing a model, not only is it available early in the software life cycle, at 
design time, so you can find problems earlier, it is also reusable over multiple platform upgrades. 
The objective is to lower the cost and schedule impact of errors by reducing rework and the 
likelihood of schedule overruns, thereby minimizing the number of times tests have to be applied 
to the upgrade.  

The three key elements of the VUV method are (1) a description of the VUV method steps, (2) an 
Architectural Dependencies Catalog (ADC) and, (3) strategies for modeling the existing 
application system and computer platform as well as the new platform. 

This report has the following structure. Section 3 provides the context for introducing the method, 
including an overview of root cause of system faults. Section 4 provides an overview of the VUV 
method. Section 5 illustrates the use of the VUV method by applying it to an example and 
elaborating its steps. Section 6 explains the purpose of the ADC as an important tool to the 
method and presents its initial content. Section 7 discusses modeling strategies for applying the 
method in modeling the application architecture, addressing key operational quality attributes in 
the model, and determining resource availability in a computer platform. Section 8 outlines 
broader applicability of the VUV method. 
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3 Challenges in Software-Reliant System Upgrades 

In this section, we explore issues pertaining to software-reliant system upgrades. We begin with 
an overview of embedded system architecture. We follow this overview with a discussion of the 
importance of understanding and managing the impact of change on OQAs. Next, we discuss how 
mismatched assumptions—stemming from how an engineer believes a system works versus how 
it actually works—can lead to disastrous results. Because assumption mismatch can have such 
devastating ramifications, we focus the VUV method to address these areas of mismatched 
assumptions.  

We wrap up Section 3 with a summary of four root cause areas of mismatched assumptions and 
the AADL concepts available to represent them. The root cause areas are incorporated into the 
VUV method to help modelers identify and prevent common assumption-related system failures 
through the ADC.  

3.1 Brief Introduction to Software-Reliant System Architecture 

Large-scale, software-reliant, mission-critical systems (such as aircraft, transport vehicles, or 
robotic systems) are distributed real-time embedded systems. They consist of three major 
architectural components: (1) the mission system and the environment in which it operates; (2) the 
computer platform in the form of networked processors; and (3) the embedded application 
software. Figure 3-1 illustrates these elements. 

 

  

Figure 3-1: Three Elements of Software-Reliant Mission-Critical Systems 

Figure 3-1 also illustrates the focus of this report: the impact of the computer platform changes 
(upgrades) on the embedded application software and on the mission system. The mission system 
has an architecture that system engineers develop to meet mission requirements. Typically, 
computer engineers design the computer platform architecture to interface with the mission 
system through sensors and actuators and to provide the resources to execute the embedded 
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mission application software. The embedded application software is responsible for processing 
observations of the environment and controlling the operation of the physical mission system, 
including management of physical system component failures. The embedded software system is 
deployed on the computer platform in ways that allow it to fulfill its requirements, such as 
performance, safety, and reliability, despite possible computer hardware failures.  

3.2 Importance of Operational Quality Attributes (OQAs) 

In this section, we discuss the importance of understanding the impact of platform changes on 
current and desired system qualities (e.g., performance, fault tolerance, and safety). In software 
engineering, we capture requirements in terms of functional requirements and quality attribute 
requirements (also often referred to as nonfunctional requirements). Functional requirements 
describe the work a software system does, such as computing a value. Quality attribute 
requirements describe qualities of the software system such as performance, safety, and reliability. 
We refer to quality attribute requirements focused on runtime concerns as operational quality 
attributes or OQAs, as explained in Section 1. OQAs are central to the VUV method because we 
must understand the impact of proposed platform changes on the OQAs.  

 

Figure 3-2: Example of an Embedded Software System 

The graphic in Figure 3-2 represents a radar system that must provide updates to the position of 
objects in the sky with enough frequency to allow a timely reaction to them. This graphic 
represents the application software functions as three threads that are grouped into two separate 
processes in the system’s runtime environment and shows how these software elements are bound 
to (executing on) a single processor. For the system to meet its timeliness requirements, the 
threads must complete their execution by their specified deadline and not exceed their allotted 
processor execution time. The scheduling algorithm used in the operating system determines the 
particular schedulability analysis technique. For example, the rate-monotonic analysis theory 
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[Klein 1993] can analytically determine whether all threads meet their deadline under a fixed 
priority preemptive scheduler, assuming the thread priority is assigned according to the execution 
rate.  

The radar system example illustrates the importance of using an architecture notation that 
supports component concepts specific to embedded systems with well-defined semantics and 
properties to support the validation of OQAs through analysis of an architecture model. To 
validate OQAs at a specific point in the system development, the architecture model of the 
computer hardware and software designed for the fielded system (i.e., the operational 
architecture) must be precise enough to permit quantitative assessment. This quantitative 
assessment is refined as better data describing the architecture and performance measures are 
provided. 

Modeling approaches for embedded systems must also allow for modeling at different levels of 
abstraction. The individual characteristics of the different parts of the runtime architecture (e.g., 
worst-case execution time [WCET] of tasks) are combined with characteristics of the computer 
system (e.g., processor speed and scheduling protocol) to provide a system-wide OQA (e.g., in 
this case, the schedulability of the task set). At the same time, the software functions (software 
development units) are built to, or assume specific services are provided by, the computer 
platform. For instance, when the software sends messages between processors, the programmer 
may assume a reliable communication mechanism. In the final system, these assumptions are 
typically implicit and do not form part of the description in the final software artifacts (e.g., 
source code). Analysis approaches must allow for analysis of interactions of software components 
in terms of the software’s task and communication architecture as it is deployed on the computer 
platform and interfaces with the physical mission system to verify requirements and validate 
assumptions.  

The bottom line is that a good understanding of OQAs is important because violated OQAs are a 
key contributor to system failure or design-related problems. For this reason, OQAs are central to 
the VUV method. 

3.3 Implications of Mismatched Assumptions 

Another key contributor to system failure is mismatched assumptions. Mismatched assumptions 
can lead to disastrous circumstances and are therefore a central target of the VUV method. 
Mismatched assumption failures occur when engineers make certain assumptions about how a 
system will operate or be used and one or more of the assumptions are wrong. It is impossible for 
one engineer to understand a large, complex system in precise detail. So different types of 
engineers focus on different aspects of the system, often making assumptions about how other 
aspects of the system impact those the engineer is focused upon.  

Figure 3-3 illustrates the different perspectives and focus areas for the various types of engineers 
involved in developing embedded systems. A system engineer focuses on the capabilities of the 
system to be built and its interactions with its environment, including the system user or operator, 
as well as its decomposition into major subsystems. The system engineer makes assumptions 
about how the operator interacts with the system (e.g., an assumption that the driver is inside the 
train when the doors are closing). A control engineer focuses on how the physical system is to be 
controlled (i.e., on the interaction between the system under control and the control system) in 
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order to achieve objectives and may make assumptions about the response of the physical system 
to control commands. Application developers translate the control algorithms into software 
implementations. In writing the software, the application developer makes assumptions about the 
size of data values when choosing an 8- or 16-bit representation for variables, or the measurement 
unit associated with the data value. An embedded software system engineer makes decisions 
about the runtime architecture of the embedded software in terms of concurrently executing tasks 
and their way of communicating with each other as well as decisions about the distribution of 
these tasks on a networked computer platform. In the process, assumptions are made about 
concurrent execution and mutually exclusive access to data or hardware and about software 
executing on physically separate hardware to achieve redundancy. In Section 3.4, we identify four 
root cause areas of system-level faults caused by mismatched assumptions in the embedded 
software.  

 

Figure 3-3: Implications of Mismatched Assumptions  

In its research, the AADL team made a key finding: mismatched assumptions between the 
mission platform, the computer system, and the embedded application software contribute 
significantly to increased failures and delays in system delivery. To illustrate, we present several 
examples of mismatched assumptions from an earlier report [Feiler 2009a]. 

After years of development of the F/A-22 fighter plane, flight tests began in late 1997, but the 
aircraft still experienced serious avionics instability problems as late as 2003. According to 
testimony from the GAO, “The Air Force told us avionics have failed or shut down during 
numerous tests of F/A-22 aircraft due to software problems. The shutdowns have occurred when 
the pilot attempts to use the radar, communication, navigation, identification, and electronic 
warfare systems concurrently” [Li 2003]. The shutdowns were due to the use of asynchronous 
clocks for processors, insufficient control of state, and the resulting set of inconsistent states 
across the processors. 

In another example, the flight software for a fighter was migrated to an IMA architecture. The 
application software was originally implemented as a cyclic executive with periodic sampling 
tasks. When the application was ported to a rate-monotonic, fixed-priority, preemptive scheduler, 
the display showing tracked objects randomly blurred. The transfer of target data from the sensor 
to the display, which predictably took four frames in the original system, now varied between four 
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and eight frames due to preemption and depending on the workload. The display of time-sensitive 
data was affected by a change in the scheduling protocol and the use of a nondeterministic 
sampling communication scheme. This showed itself as an oscillating target symbol of the tracked 
object [Feiler 1998].  

In 2008, a Qantas flight unexpectedly dropped as much as 650 feet multiple times within a few 
minutes [Wikipedia 2008]. A fault in one of three Air Data Inertial Reference Units (ADIRUs) 
caused the unit to supply incorrect data to other aircraft systems and led to automatic 
disengagement of the autopilot, false stall warnings, and loss of altitude information on the pilot 
display. With the autopilot off, the primary flight control computer still received false data two 
minutes later from an ADIRU and commanded a major pitch downward. A failure in one 
component of a triple-redundant unit caused an operational mode change and operational response 
to a data stream by another subsystem with no recognition of its faulty nature (i.e., the subsystem 
assumed a correct data stream due to the redundant nature of the source).  

3.4 Root Cause Areas of System-Level Faults 

Analysis of the problem examples described in the previous section and additional cases led us to 
the identification of four root cause areas of system-level faults [Feiler 2009b, 2010]:  

1. end-to-end flows of data streams 

2. distributed communicating state machines 

3. virtualized resources 

4. resource availability 

In this section, we describe the elements of each of the four areas and explain the AADL concepts 
that support the capture and analysis of relevant system information for assessing each of these 
areas in an architecture model. The elements of each root cause area have been incorporated into 
the ADC, which is part of the VUV method. We describe the ADC in Section 6.  

3.4.1 End-to-End Flow of Data Streams 

One root cause of system-level faults is that engineers often look only at a subset of the system. 
For systems such as control systems, engineers must also look at the flow of data through the 
system from end to end. A typical example of an application pattern that should be modeled end-
to-end is a control system that performs periodic sampled processing of a data stream of sensor 
readings. Control loops are sensitive to time and respond with unstable behavior if unexpected 
jitter occurs in the latency of the processed data. Another example of where we recommend end-
to-end analysis is in a mission system that processes information about the mission environment 
to provide reasonably accurate situational awareness. In this case, messages must be processed in 
a time-consistent manner to present a cohesive whole. 

To make these end-to-end flows ready for analysis, we must explicitly represent them in an 
architecture model of the system as the flow of information between components along 
connections. This involves identifying all the components involved in the flow and their 
connections. For such analysis to be performed early in the life cycle, it is essential that flows 
through components can be represented abstractly by flow specifications from input to output 
without necessitating looking inside the implementation of the component. The AADL provides 
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constructs to represent both end-to-end flows and component flow specifications annotated with 
properties for analysis at different levels of fidelity. 

Each processing step can affect the handling of such data streams, and the runtime architecture of 
the embedded software can greatly affect the timing of data processing and transfer. Therefore, it 
is essential to document assumptions made about such data stream characteristics, which fall into 
the following categories: 

• characteristics of data such as the application data type (e.g., external temperature), its base 
type (e.g., 8-bit or 16-bit signed integer to represent temperature values), and measurement 
unit (e.g., temperature expressed in terms of degrees Celsius or Fahrenheit). Two units 
exchanging such data might mistakenly make different assumptions about the data 
representation. 

Support for analysis with AADL: These characteristics are affected by changes and 
additions to mission capabilities. An example of a mission capability change is the addition of 
a device that can provide position information with higher precision. However, this 
information must be propagated throughout the system in order to draw benefits. These 
characteristics are represented as property values on the data types associated with ports and 
are checked along port connections. The OSATE toolset supports such consistency checking 
[SEI 2009b]. Its utility has been demonstrated in the Aerospace Vehicle Systems Institute 
(AVSI) System Architecture Virtual Integration (SAVI) proof of concept project [Feiler 
2009a]. 

• data stream characteristics such as lack of missing stream elements, complete transmission of 
all stream elements, and acceptable limits in value changes between elements of the stream. 
The characteristics of data streams are affected by  

− whether the application performs sampled processing of input or message processing 

driven by the arrival of messages 

− faults in the processing steps  

− faults in the protocols used in communicating the data between the processing steps 

Support for analysis with AADL: Since data and information streams flow through port 
connections, the data stream characteristics can naturally be represented by properties on data 
and event data (message) ports. Incoming ports record assumptions they make about data they 
receive, while outgoing ports specify the output pattern of the data stream they generate. The 
OSATE toolset includes a simple analysis capability that identifies mismatches between data 
stream characteristics [SEI 2009b]. 

• time sensitivity of the data in the form of age, response time, and latency jitter. Contributors 
to these related terms are not only the transfer time through the physical device and wire, 
processing time, queuing delay, and sampling delay, but also elements of the software 
runtime system such as preemptive task scheduling, rate group optimization, concurrency, 
partition scheduling, and protocol execution semantics.  

Support for analysis with AADL: The mapping of the application software into a runtime 
architecture in terms of threads and port connections and its binding to computer hardware 
and runtime infrastructure determine the contributors to latency and response time variation. 
Flow specifications and end-to-end flows can have property values to reflect requirements, 
estimates, and actual data. The OSATE toolset includes an end-to-end latency analysis 
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capability that takes into account latency contributions by various runtime system 
mechanisms [Feiler 2007a, 2008a]. 

3.4.2 Distributed Communicating State Machines 

A second root cause problem related to system-level failure is that engineers make assumptions 
about their runtime systems and computer hardware when implementing communicating state 
machines. Examples of such distributed state machine communication are the replicated logic to 
manage the reconfiguration of redundant systems, the coordination of operational modes in 
different subsystems of a mission-critical system, and application protocols, such as hand shaking, 
to manage the release of mission assets such as weapons. We have identified the following types 
of state machine interactions: 

• coordination of state machines. Replicated state machines must show identical state behavior, 
mirrored state behavior, or coordinated state behavior. Implementations of such state behavior 
coordination range from communication of state transition events through a message system 
or alarm handler to periodic sampling of transmitted state. It is essential to ensure that the 
state machine logic of a single state machine preserves its behavior when it is replicated and 
distributed. Different implementations of the state coordination respond differently to 
different runtime system mechanisms and hardware characteristics. For example, change in 
scheduling protocol from cyclic executive to preemptive scheduling based on rate-monotonic 
analysis (RMA) may introduce race conditions. Therefore, it is critical that the assumptions 
made by the application software are satisfied by the execution platform and still hold after a 
platform upgrade.  

Support for analysis with AADL: Rockwell Collins and the SEI have demonstrated the 
ability to validate redundancy logic through model checking. The SEI has prototyped such an 
analysis capability in the context of the OSATE toolset and included a demonstration in the 
AVSI SAVI proof of concept (POC) project [de Niz 2009, Feiler 2009a]. 

• event observations. For control systems, state behavior modeling in Simulink StateFlow often 
leads to an implementation that samples exchanged state. State changes are observed by 
sampling state in periodically executing control system threads. Sampling of these time-
sensitive states may result in event observation loss and protocol lockup when operating on 
different processor and network platforms. State logic that works for nominal operation in a 
synchronous system setting without failure may not hold in actual deployment on a 
distributed set of processors operating on separate clocks with transient failures of the 
communication network. For example, message loss in a communication protocol can have 
catastrophic results when transition events are communicated. Similarly, it is imperative to 
ensure that variation in time due to jitter or clock drift does not affect the intended 
transmission of state transition events. 

Support for analysis with AADL: AADL provides well-defined semantics or queuing event 
and message ports as well as sampling data ports to represent different port-based 
communication. Binding of threads as well as their communication via connections to 
elements of the computer platform allow us to check for incompatibility with the services and 
protocols provided by processors and networks. This allows us to analyze the system 
architecture to detect potential nondeterminism and loss of information—both through model 
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checking [de Niz 2009] and by identifying the need for double buffering in sampled port 
implementations [Feiler 2008c]. 

3.4.3 Virtualized Resources 

A third root cause area related to system-level failure is that engineers do not understand the 
possibly negative side effects that occur when processor, network, and memory resources are 
virtualized. System architectures use these virtual resources and assume certain guarantees about 
the physical resource that virtual resources make.  

Virtualization of resources takes on many forms. Multiple threads (tasks) executing on the same 
processor share processor cycles, and one thread’s execution can preempt other task executions 
and affect their start and completion time. As a result, a task being migrated from a dedicated 
processor to a shared processor may sample its input at different times rather than the beginning 
of the sampling period. Migration from a federated architecture to an IMA architecture introduces 
time and space partitioning where a partition represents a virtual processor. Threads within a 
partition are scheduled as if they were on a processor, but their start and completion time is 
affected by the time slot a partition is assigned on a processor. Again the thread sampling time is 
affected, in this case also by the allocation of partitions to partition schedule time slots.  

The AADL virtual bus concept represents virtual channels and protocols. The AADL virtual 
processor concept can represent time partitions as well as hierarchical schedulers. The 
assumptions in this root cause area fall into the following areas: 

• resource isolation guarantee. Virtual resource concepts of processor partitioning (e.g., 
Aeronautical Radio Incorporated [ARINC]653) and virtual channels represent apportionments 
of physical resources as well as information access and fault propagation boundaries that 
must be validated and enforced.  

Support for analysis with AADL: The AADL process concept represents desired address 
space protection within a processor. A processor may be decomposed into virtual machines or 
partitions using the AADL virtual processor concept. It provides both time and space 
partitioning of the physical processor [SAE 2009]. A processor may not support such address 
space protection at runtime, in which case dedicated hardware is a common solution. 

• redundancy guarantee. Virtualization turns physical redundancy into logical redundancy. In 
order to ensure reliability and availability, we must guarantee that the deployment of the 
virtualized resources provides physical redundancy where required.  

Support for analysis with AADL: AADL models include deployment binding of application 
threads to virtual processors and to processors through binding properties. Similarly, 
connections are bound to appropriate virtual buses and buses representing virtual channels 
and physical networks. For application components, the modeler can indicate whether 
redundant components require deployment on separate physical components. In addition, the 
need for physical redundancy can be recorded through the Error Model Annex of AADL 
[SAE 2006] and drive hazard, reliability, or availability analysis [Feiler 2007b]. 

• fair resource use guarantee. Mixed-criticality applications, such as periodic and event-driven 
processing, scheduling priorities and load scheduling priorities, multiple security layers, 
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safety-criticality levels, and redundancy requirements, must use shared resources consistently 
despite conflicting demands. 

Support for analysis with AADL: Resource capacities and resource budgets can be 
associated with physical resources as well as logical resources and application components. 
The OSATE toolset includes a resource analysis capability for processor, memory, and 
network (bus) resources. In the case of safety and security concerns, modeling and tool 
support ranges from simple safety- and security-level consistency checking along port 
connections to full-scale security analysis based on the Bell LaPadula model [Hansson 2008], 
including use of virtual processors and virtual buses [Delange 2009a]. 

• reference time guarantee. Sampling of data on a dedicated processor is performed relative to 
the processor clock, while the same software executing as threads in partitions sample the 
data in terms of virtual time (i.e., the time the application code actually executes relative to 
other threads and partitions). Similarly, applications may process time-sensitive data by time 
stamping that assumes a common reference time despite potentially multiple time sources.  

Support for analysis with AADL: Virtual time is implicitly reflected in virtual processor 
and thread components executing on a shared processor resource according to a scheduling 
protocol. AADL provides property support for characterizing different scheduling protocols, 
including ARINC653 partition scheduling. AADL also supports modeling of the fact that 
different parts of a computer platform may execute on separate clocks through multiple 
reference time components. Their characterization includes bounds on clock drift [SAE 
2009]. 

3.4.4 Resource Availability 

A fourth root cause is that the computer resources as well as physical resources are shared, and 
concurrent use can lead to resource contention. Therefore, it is necessary to validate assumptions 
about availability of resources and resource guarantees.  

AADL supports modeling of physical and logical resources as discussed in the previous section. 
Those resources have properties to indicate coarse-grained resource capacities as well as detailed 
forms of resource capacity specification. For example, a processor has properties for a MIPS4 
budget, processor cycle time, and context switch times between threads and between processes.  

The assumptions for resource availability can be categorized as follows: 

• undocumented direct and indirect demands on all logical and physical resources by all 
application and infrastructure units for peak demands  

Support for analysis with AADL: AADL provides component categories of processor, 
memory, and bus to represent physical computer architectures. Similarly, virtual resources 
can be represented in AADL models to both require resources as well as provide resource 
capacity. Application-level resource demands on processors, memory, and networks can be 
derived from deployment bindings, as demonstrated in the AVSI SAVI POC project [Feiler 
2009a]. 

 
4  MIPS stands for Microprocessor without Interlocked Pipeline Stages. 
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• impedance mismatch of resource demand and capacity, such as high-volume transfers over a 
bus flooding a low-speed processor with interrupts to handle the traffic, resulting in denial of 
service and lower-than-expected processor speed  

Support for analysis with AADL: In AADL models, computer hardware components are 
interconnected via buses through bus access connections. Bus access features of processor, 
memory, bus, and device components can have properties that indicate maximum 
contributions to network traffic. 

• lack of resource guarantees of shared hardware resources such as delay of low-volume data 
transfer due to high-volume traffic by a direct memory access (DMA) transfer  

Support for analysis with AADL: An AADL-based analysis capability has recently been 
developed to extend the analysis capabilities in OSATE to address this resource contention 
issue [Mohan 2009]. 

3.4.5 Other Quality Dimensions and Root Cause Areas 

The VUV method is not limited to analysis of the four identified root cause areas. As new 
technologies are deployed in execution platforms, they may uncover additional implicit 
assumptions by the embedded software application that may be violated. Similarly, new hazards 
may be introduced that must be addressed in terms of reliability, safety, or security. The VUV 
method leverages the extensibility of the AADL to permit the addition of properties and 
sublanguages to accommodate new analytical frameworks. At the same time, the Eclipse-based 
implementation of the OSATE toolset allows the community to rapidly prototype new analysis 
capabilities, with over 50 research groups contributing such analysis capabilities.  

In addition, some OQAs may be identified as critical, such that their value should be preserved or 
improved. For certain OQAs, the AADL-model-based engineering community has associated 
analytical frameworks and prototyped implementations (http://www.aadl.info). Two examples are 
security [Hansson 2008] and redundancy in support of safety-critical and mission-critical systems 
[Feiler 2004]. 
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4 Virtual Upgrade Validation (VUV): Method Overview 

The objective of applying the VUV method is to understand the impact a computer system 
upgrade can have on the OQAs of interest for an embedded software system and the relevant 
system properties associated with those OQAs (i.e., QA concerns5). In the VUV method, we 
discover potential problems by virtually validating an architecture model of the upgraded system 
before the upgrade is performed. We evaluate solutions to these problems by revising the model 
of the upgraded system. In effect, we use modeling to identify and mitigate technical risks 
associated with the upgrade of an embedded, real-time system before a single change is made.  

The VUV method focuses on the impact of changes to the computer platform. We can expand it 
to cover the impact of changes to components of the embedded application software and to 
changes in the physical mission platform (e.g., airframe dynamics) through interaction with 
system engineering models.  

4.1 The VUV Method and the Architecture Dependencies Catalog (ADC) 

The modeling effort in VUV helps to keep the cost of upgrade as low as possible by assessing an 
upgrade’s impact before the upgrade begins. The Architecture Dependencies Catalog (ADC) is a 
collection of tables that provides modeling guidance to aid focus on potential upgrade problem areas 
(see Section 6). The ADC supports the evaluation of potential impact. The ADC allows the modeler 
to determine the relevant modeling requirements and assumptions that must be taken into account 

 

 

Figure 4-1: Focused Modeling via Architectural Dependencies Catalog 

 
5  Quality attribute (QA) concerns are the properties of a system by which attributes of a system are judged, 

specified, and measured [Barbacci 1995]. For example, concerns for the performance OQAs include latency, jitter, 
and throughput. 
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when evaluating an architectural change from two perspectives: the application category and the 
OQAs of concern. The modeling requirements help modelers to determine which parts of the system 
they need to model in the evaluation. Figure 4-1 illustrates this modeling process. The ADC helps 
identify the prevalent application patterns for each application category. For each application 
pattern, the ADC allows the modeler to identify the intended component interactions, assumptions 
made by the pattern, and modeling requirements for the application and platform. The modeling 
requirements are expressed in terms of the application intent and in terms of possible alternate 
implementations. For example, events such as operator button pushes can be communicated as 
queued events and processed on demand as events arrive, or events can be communicated through 
a state variable that is sampled by the recipient at a high enough rate to allow recognition of state 
changes as events. 

The ADC allows the modeler to identify the most relevant OQAs and related system properties 
that can be affected by changes to the computer platform for each of the application categories. 
For each system property, the ADC indicates the system components, assumptions, and modeling 
requirements on the application and platform in order to perform the relevant analyses. 

4.2 Steps and Artifacts of the VUV Method 

The VUV process for discovering and evaluating potential risks of computer system upgrades 
consists of seven steps, which are listed in Table 4-1. 

Table 4-1: Steps of the VUV Method 

Step Description 

1 Describe the Upgrade. Explain the modifications, reasons, and objectives of the 
upgrade. 

2 Describe Relevant Operational 
Quality Attributes and System 
Properties. 

Describe and prioritize the OQAs and relevant system 
properties (OQA concerns) that must be preserved across the 
changes. 

3 Identify Changes in Computer 
System. 

Identify changes in the architecture of the old computer system 
with a focus on the parts that are modified, replaced, or added. 

4 Identify Architectural 
Dependencies. 

Identify architectural dependencies by utilizing the ADC. 

5 Model and Analyze the Original 
System. 

Create and analyze a model of the original embedded system 
architecture with respect to the identified OQAs and concerns. 

6 Model and Analyze the Upgraded 
System. 

Create and analyze a model of the new embedded system 
architecture. 

7 Revise the System Upgrade.  Provide the opportunity to explore alternatives to correct any 
shortcomings of the upgrade. 

 
The steps as well as the artifacts created in the execution of the VUV method are shown in Figure 
4-2. In the figure, the steps are represented as gray rounded rectangles and outputs are represented 
as blue rectangular icons with a truncated upper-right corner. Requirements, ADC, ATAM results, 
and other supporting documents used in the method are represented as a single rectangle. 
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Figure 4-2: Steps and Artifacts of the VUV Method 

4.3 Summary of the Steps of the VUV Method 

In this section, we summarize the purpose and outcomes of each of the steps of the VUV method. 

Step 1 explains the modifications of the upgrade (e.g., addition of processors or change of 
operating system), the reasons for the upgrade (e.g., obsolescence, vendor issues, or need for 
increased processing capacity), and the objectives of the upgrade (e.g., increased performance, 
reliability, and/or reduced weight). Input to this step takes the form of a description of the upgrade 
(e.g., a requirements document). The outcome of this step is an Upgrade Description Document 
or similar document that includes the description, rationale, and objectives of the upgrade. 

Step 2 describes the OQA concerns and values of system properties that must be preserved across 
the change as well as those that must be improved (e.g., same end-to-end deadlines, desired target 
values, and prioritization of system properties to facilitate tradeoff decisions when resources are 
limited). A quality attribute utility tree from the ATAM method [Clements 2001] is useful for 
prioritizing the OQAs. Figure 4-3 displays a sample utility tree with quantified OQA measures 
and their priority levels shown as the leaves of the tree. The leaves of a utility tree typically 
represent use case scenarios. We can regard a computer system upgrade as a growth scenario. 
Such growth scenarios as well as other use scenarios are reflected in the architecture model 
through properties on architecture components, connections, and flows. The outcome of this step 
is a summary of the required OQAs and values of the relevant system properties that the upgrade 
must satisfy.  
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Utility

Performance

Modifiability

Availability

Security

Add new engine and controller
in < 20 person-months. 

Change vehicle control logic
in < 10 person-weeks.

Vehicle power outage requires battery 
backup stabilization < 5 ms.

Network failure detected and recovered
in < 2 seconds.

Reduce input to actuation latency to 
< 150 ms.

Deliver satellite video in real time.

Access authorization works
99.999% of the time.

Credit card transactions are secure 
99.999% of the time.

Data
Latency

Transaction 
Throughput

New products 

Change 
COTS 

H/W failure

COTS S/W
failures

Data

Data
confidentiality

integrity

(L,M)

(M,M)

(H,H)

(H,L)

(H,H)

(H,H)

(H,M)

(H,L)
 

Figure 4-3:  A Sample Utility Tree 

Step 3 identifies changes in the architecture of the computer platform with a focus on the parts of 
the architecture that are added, modified, or removed. These parts can be schedulers, protocols, 
processors, networks, or memory. The outcome of this step is the documentation of those changes 
in the computer that are involved in the upgrade. 

Step 4 identifies architectural dependencies that provide the modeling and analysis requirements 
for the original and changed systems. This critical step is supported by the ADC, which is 
presented in Section 6. This catalog reflects insights from the root cause areas discussed in 
Section 3.4. It guides a designer in defining the modeling and analysis required to assess potential 
impact on OQAs and identifies relevant system properties as well as impacted assumptions. The 
outcome of this step is the documentation of the modeling and analysis requirements for both the 
original and new systems. 

The ADC consists of four tables that are defined in Section 6. These tables guide a designer from 
a general application domain categorization of the system to specific modeling and analysis 
requirements and associated assumptions that facilitate evaluating potential problems in an 
upgrade. Figure 4-4 shows the five-substep procedure employing the ADC with the four tables 
shown on the left.  

• In the first two substeps, a designer (1) identifies the relevant application patterns using the 
Application Category to Patterns table (Table 6-1 on page 34) and (2) establishes modeling 
and analysis requirements for those patterns, using the Modeling Requirements for 
Application Patterns table (Table 6-3 on page 35).  

• In the next two substeps, the designer (3) identifies the relevant OQAs and relevant system 
properties using the Application Category to OQA-Related System Properties table (Table 6-2 
on page 35) and (4) establishes the modeling and analysis requirements for the relevant 
system properties using the Modeling Requirements of Relevant System Properties table 
(Table 6-4 on page 37).  

• Finally, the designer (5) compiles a combined listing of recommended modeling and analysis 
requirements for the system. Modeling and analysis requirements describe what to model, the 
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analyses to conduct, and the assumptions associated with the relevant application patterns and 
relevant system properties. 

Application 
Category to 

Patterns

Modeling 
Requirements for 

Application Patterns

Modeling 
Requirements 

of OQAs

(1) Identify the relevant application patterns—those present in the system 

Relevant 
Patterns

(2) Establish modeling requirements for the relevant patterns

(4)Establish additional modeling requirements for relevant OQAs

Modeling  
Requirements

Modeling  
Requirements

Recommended 
Modeling

Requirements

(5) Compile Modeling Requirements

Application 
Category to  

OQAs
Relevant OQAs

(3) Identify  relevant OQAs to analyze for the application categories

Application OQAs

Application Patterns

 

Figure 4-4: Step 4 ADC Procedure 

This procedure is completed for the original system in support of developing a model of the 
original in Step 5 and for the modified (upgraded) system in support of developing a Modified 
(Upgrade) Model in Step 6. 

Step 5 creates and analyzes a model of the original embedded system architecture, as defined by 
the modeling and analysis requirements identified in Step 4. If a model of the original system is 
not available, the designer creates one. Otherwise, the designer uses the relevant elements of an 
existing model. The model of the original system consists of the application software architecture 
and a model of the existing execution platform. The focus of the models is on the upgrade 
changes. This focus results in models that have some parts of the architecture elaborated (those 
most relevant to the changes), while other parts are represented more abstractly. For example, 
when part of a system is having its backbone network replaced, we may represent a multi-core 
processor as a black box. The results of Step 4 provide guidance on the information that we must 
capture to perform OQA-specific analysis. Section 7.1 (beginning on page 39) provides additional 
modeling and analysis guidance both for representing application patterns and for supporting 
analysis of specific OQAs. The outcome of this step is the model of the original system and the 
results of the analyses of that model. 

Step 6 creates and analyzes a model of the new embedded system architecture, as defined by the 
modeling and analysis requirements identified in Step 4. In this case, the focus is primarily on 
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capturing the new execution platform and annotating those parts that have changed and are 
relevant to the OQA analyses. The analyses will identify whether the OQAs meet their desired 
values. The outcome of this step is the model of the change system and the results of the analyses 
of that model. 

Step 7 provides the opportunity to explore alternatives to correct any shortcoming of the upgrade. 
This may involve refinements to the computer system, refinements to the runtime architecture of 
the application to change the assumptions on the computer system, or possible tuning of the 
application functionality to reduce the dependency on certain runtime architecture properties. The 
outcomes of this step are revised models and supporting analysis results. 

Figure 4-5 shows an analysis framework for software assurance developed by the SEI for NASA 
[NASA 2009b]. The steps of the VUV method fit into this framework as follows. Steps 1, 2, 3, 
and 4 support the Focus activity. Steps 5 and 6 support the activities of the Build and Analyze 
phases. Step 7 is represented in the process flow by the feedback loop between the Build and the 
Analyze phases, as shown by the dual-colored flow from Analyze Models. In this case, a modeler 
iterates between revising the upgraded system model and analyzing the impact of the change on 
the OQA concerns. 

 

Control Flow
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Figure 4-5: Analysis Practice Framework Summary  
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5 Application of VUV by Example 

This section elaborates on the VUV method steps. We describe the actions and outcomes for each 
step in a simplified fly-by-wire system such as the one in Figure 5-1. In this system, a pilot uses a 
sidestick6 to command the aircraft. The sidestick output goes to a fly-by-wire control computer 
that calculates and sends the requisite commands to control surface actuators that move the 
surfaces. Sensors associated with the control surfaces send position-related information to the fly-
by-wire control computer via individual sensor lines. Note that this system is a simplified 
example used to illustrate the method. It does not represent any specific fly-by-wire 
implementation.  

 

Figure 5-1: Control Surfaces on an Aircraft 

In subsequent sections, we describe the application of the VUV method to this simplified 
example.  

5.1 Step 1: Describe the Upgrade 

This step provides the reason and objective for the upgrade. The reason must state the situation 
that triggered the decision to upgrade the execution platform. The objective should state the 
desired result of the upgrade; it is paired with a description of what must be done, at a high level, 
to accomplish the objective.  

In our example, the reason for the upgrade is to eliminate noise7 in the signals received from the 
sensors. This noise is due to the lengthy runs from the sensors to the control computer. The 
upgrade objective is to reduce the distance between the sensors and the Sense Plane Status 
function to less than 10 meters. This objective implies that this function will be separated from the 
other functions and put into a special computer closer to the wings.  

 
6  A sidestick is a device that translates the motion of the pilot’s hand into control commands for the airplane. 

7  Signal noise is due to random fluctuation in an electrical circuit. 
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Figure 5-2 illustrates the upgrade change. The upper portion shows the original system that 
consists of application tasks that execute on a single processor. The lower part shows the same set 
of application tasks distributed across two processors that interconnect via a network bus. In this 
figure, the solid lines with black arrowheads connecting the software components represent the 
communication of data between those components. The solid lines with white arrowheads define 
the connections between processors and the network bus. The double-lined arrows, extending 
from each system boundary to a processor and from a cross-system connection to the network 
bus, represent the binding of the software to a specific processor and communication connection 
to a specific network.  

 

Figure 5-2: An Example of Execution Platform Changes 

5.2 Step 2: Describe Relevant Operational Quality Attributes and System Properties 

Three scenarios of system properties relevant to OQA concerns must be documented: system 
properties whose values must meet requirements in the original system, system properties whose 
values must meet modified requirements, and possibly system properties whose values must meet 
new requirements. When we document these system properties, the parts of the system involved 
in achieving them must be included. The documentation will guide our investigation of which 
parts and characteristics of the old execution platform affect the relevant system properties. 
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To provide further detail regarding the system properties to be maintained, we expand the 
explanation of the system. The computer continuously senses the status of the aircraft to evaluate 
changes in the environment (e.g., disturbance) and adjusts the control surfaces accordingly. This 
continuous sensing and correction of the control surfaces must be performed frequently enough to 
avoid variations in the environment that are too large to correct. A system property of interest is 
the frequency required to sense the environment and aircraft position and adjust the trim of the 
control surfaces. (For the Airbus A320, this sensing-adjustment cycle is completed every 30 
seconds.8) This is modeled as a periodic thread that executes the functions in sequence. A 
schedulability analysis verifies that this task together with other tasks executing on the same 
processor can finish by the required individual end-to-end deadlines. 

To understand better the architectural impact of the platform change on the relevant system 
properties, consider the new embedded system architecture depicted in Figure 5-3. 

 

Figure 5-3: New Runtime Architecture for Automatic Trimming 

The change in this figure consists of the movement of the module Sense Plane Status to a 
new processor, Processor 2, that is communicating with the old processor, Processor 1, through a 
new network, Network 1. While these changes seem to increase the processor cycles available for 
scheduling the different modules in the automatic trim subsystem, the interprocessor 
communication protocol, the scheduling of the network and processor, and the speed of the new 
processor and network, among other things, can affect the OQA concerns of interest. To 
understand the logic behind this change, let us consider the elements of the change (i.e., the 
network bandwidth, the communication protocol, and the processor scheduling).  

• A direct comparison against the required communication bandwidth shows the network 
bandwidth effect on the changes in Figure 5-3. In particular, let us imagine that the plane 
status is contained in a data structure of 30 KB, which is communicated between the Sense 
Plane Status and the Calculate Trim Pos modules. Communicating every 30 

seconds, then, requires 1KB/s of bandwidth capacity (an additional latency due to the 
communication delay will occur). Obviously, if the network has a bandwidth capacity of less 
than 1KB/s, this OQA requirement will not be satisfied.  

 
8  While this period seems long, it is the one presented in the reference literature [Apollo 2002]. Hence, we will 

use it to exemplify that problems can emerge even at a slow rate. 
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• The selected communication protocol plays a role in how the application is communicating 
data. In this case, to reduce the required communication bandwidth, we can change the 
application to send only those parts of the plane position data structure that have changed—a 
state change or state transition communication application pattern (see Table 6-3). However, 
if the communication protocol does not guarantee message delivery and a message is lost, 
then the Calculate Trim Pos module acts on a position of the plane that is incorrect due 

to the loss of incremental updates. 

• Processor scheduling involves the timing and organization of the synchronous execution of 
the different threads. While a fixed-priority scheduler offers multiple advantages, if the 
original system is using static timeline scheduling, the designers of the original system may 
have assumed specific characteristics of this scheduling policy (e.g., a specific unchanging 
order of execution of the threads). In our example, the functions Calculate Trim Pos 
and Modify Trim Pos execute in a single thread, which implies that they are always 

executed in the same order. If we put them in separate threads and change the scheduler in 
Processor 1 from a time-division multiplexing schedule (fixed execution timeslots over a 
time frame) to a preemptive fixed-priority scheduler (using rate monotonic scheduling [Klein 
1993]), then it can no longer be assumed that the thread Calculate Trim Pos will always 
run before thread Modify Trim Pos. That is, it may be possible for Modify Trim Pos 
to run before Calculate Trim Pos.  

In summary, the move to a two-processor system and the change in scheduling policy affect the 
information flow, in particular its latency and the age of data. The chosen scheduling policy, 
network protocol, and hardware are potential contributors to latency and latency jitter. There is 
also a potential for race conditions, especially if the implementation of inter-thread 
communication is through shared data buffers.  

5.3 Step 3: Identify Changes in the Computer System 

Along with the description of the OQAs, the affected parts of the system are documented. This 
documentation is not a full description but an identification of the areas to explore further in 
search of potential problems. In our example, the changes include the addition of a processor, a 
network, and associated communication protocol and the selection (and changes) to the 
processors’ schedulers. These changes can violate application assumptions for communication 
across the network and the execution sequence of the modules Calculate Trim Pos and 
Modify Trim Pos, among other areas.  

5.4 Step 4: Identify Architectural Dependencies 

This key step helps define the potential risks and the amount of modeling needed to reduce 
uncertainty about those risks. In this step, we take the OQA concerns in terms of relevant system 
properties and the architectural changes identified in the previous two steps and evaluate problems 
in terms of  

• potential disruptions to system property values due to changes  

• potential assumption mismatches related to architectural changes 



 

27 | CMU/SEI-2012-TR-005 

The identification of both types of potential problems utilizes the catalog of architectural 
dependencies that contains relevant system properties and assumption dependencies (discussed in 
Section 6). The catalog lists the required runtime patterns upon which each system property 
depends and the application assumptions affected by the upgrade. In addition, for each application 
assumption, the catalog provides a list of application patterns and categories sensitive to the 
assumption.  

Using the ADC, we relate changes to affected system properties and modeling requirements in 
order to identify elements that affect these system properties in the existing runtime architecture 
and the new runtime architecture. Similarly, taking the view of the application assumptions 
affected by the changes, we verify whether our application contains the categories and 
architecture interaction patterns sensitive to these assumptions. Where this is the case, we model 
the parts of the application belonging to the category.  

As an example, let us reconsider the automatic trimming example of Figure 5-3. It contains both 
relevant system properties and application patterns sensitive to changes to specific parts of the 
runtime architecture. On the one hand, a system property of interest is the end-to-end deadline that 
determines the rate required to complete the control cycle from the position sensing to the trim 
position modification. The flow follows the path of the control loop pattern, whose assumption is 
deterministic sampling of the data stream. On the other hand, the state change (state transition 
communication) pattern (Table 6-3) applies because changes in data state are being transmitted. 
From the state transition communication pattern, we identify the assumption of reliable 
communication that needs to be modeled in both the old and new runtime architectures. For the 
computer platform, we identify the schedulers, the communication hardware and protocol, and the 
timing parameters of the threads related to the changed communication path (between Sense 
Plane Position and Calculate Trim Pos) as elements that can affect the assumptions.  

5.5 Step 5: Model and Analyze Original System 

Using the application category (Control System), we can obtain both application patterns (from 
Table 6-1) and related OQAs (from Table 6-2). Then from the patterns and OQAs, we can obtain 
the modeling needs related to both (Table 6-3 and Table 6-4, respectively). These modeling needs 
state the system elements and properties relevant to the analysis of a particular OQA.  

In this modeling step, we express—using AADL semantics—how the current runtime architecture 
achieves the system properties of interest and complies with the application assumptions. The 
model must contain enough information to enable analyses that support these assessments. We 
call this model the base model. In our automatic trimming example, the system properties of 
interest that we model are the processor together with the application threads.  

The second goal is to identify and model the parts of the original architecture that support the 
application assumptions. In our example, this implies modeling the shared memory structure that 
represents the plane position and how this structure is updated and queried. Figure 5-4 depicts this 
model, with the list of component properties shown in Table 5-1 and the computer platform-level 
properties shown in  

Table 5-2. Figure 5-4 shows the thread operating at a 30-second period. 
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Figure 5-4: Base Model 
 

Table 5-1: Application Component Properties of the Base Model  

Component Property Value 

Processor 1 Processor Speed 1 GHZ 

Scheduling Policy Rate-Monotonic 

Process 1 Memory Requirement 5 MB 

Thread 1 Activation Pattern Periodic 

Period 30 s 

Plane Status Size of Memory 30 KB 

Sense Plane Status Worst-Case Execution Time (WCET) 1 s 

Calculate Trim Pos WCET 1 s 

Modify Trim Pos WCET 1 s 

 

Table 5-2: Computer Platform Properties 

Component Property Value 

Processor 1 Utilization 10% 

Thread 1 Deadlines Met True 

System Failure Mode All or Nothing 

5.6 Step 6: Model and Analyze Changed System  

Using the base model, we next develop a modified model that includes the new computer system. 
The design of this new model should be guided by the potential disruptions to relevant system 
properties identified in Table 5-2. It should contain enough information to conduct analysis of 
these system properties.  

We need the same level of modeling to describe the features that support the architectural 
assumptions. In our example, this involves the new processor and network, the schedulers in both 
processors and the network, the tasks run by the processors and the flows going through the 
network, and the communication protocol. The modeling of these elements must contain the 
proper characteristics that enable us to (a) verify the system property of interest and (b) evaluate 
whether the assumptions from the state transition communication are honored or not. The 
architecture is presented in Figure 5-5 and its properties in Table 5-3.  
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Figure 5-5: Modified Model Using New Computer System 

Table 5-3: System Component Properties of the Modified Architecture 

Component Property Value 

Processor 1 Processor Speed 1 GHz 

Scheduling Policy Rate-Monotonic 

Processor 2 Processor Speed 1 GHz 

Scheduling Policy Rate-Monotonic 

Network 1 Bandwidth Capacity 512 Bytes 

Message Scheduler CANBus 

Reliability Unreliable 

Process 1 Memory Requirement 3 MB 

Process 2 Memory Requirement 1 MB 

Thread 1 Activation Pattern Periodic  

Period 30 s 

Thread 2 Activation Pattern Periodic 

Period 30 s 

Plane Status Size of Memory 30 KB 

Sense Plane Status WCET 1 s 

Calculate Trim Pos WCET 1 s 

Modify Trim Pos WCET 1 s 

Update Local Status WCET 1 s 

Sense Plane Status → Update Local 
Status 

Synchronization Sampled 

Reliability Unreliable  

Message Size 128 Bytes 

5.7 Step 7: Revise the System Upgrade 

In this step, we conduct a model-based analysis of the system properties of interest and 
application assumptions affected by the change. The problems discovered in this analysis guide 
model corrections to achieve the desired system property values. As we make these corrections, 
new interactions with other system properties can occur and new corrections will be triggered. 
The corrections to the model can be of two types: (1) corrections to the computer system to 
support the desired system property values or (2) corrections to the runtime architecture of the 
embedded software application to adapt to the new computer system. The decision of what kind 
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of corrections are desired and the potential cost of these corrections are part of the tradeoffs 
needed to be made before any firm decision takes place in terms of platform acquisition, code 
changes, and the like.  

In our example, one of these tradeoffs is that we transmit not the complete plane state every 30 
seconds but only the delta, which is reflected in the state change/transition communication 
pattern. As shown in Table 6-3, this pattern is sensitive to other architectural characteristics (e.g., 
reliability of communication). Hence, as we explore this option, the service guarantees (no 
message loss, ordered delivery) of the communication must be added to the model to enable 
exploring the tradeoffs. 

In addition, one assumption implicit in the base model is that functions execute in order: 
calculation of trim corrections always occurs after update of the plane status. The destination 
process of the connection in the modified model samples its input independently of the sender, 
which results in potentially nondeterministic sampling of the input stream. This sampling is 
indicated by the type of connection between the two threads. For time-sensitive data, this can lead 
to jitter, as is identified by the end-to-end latency analysis. For discrete-event data transmission 
through sampling rather than queuing, such as state changes or events, this can lead to a missed 
change or event, if the jitter exceeds the rate at which changes or events are sampled. In our 
example, this means that the plane status may or may not be updated before the calculation of the 
trim correction starts. 

Our first refinement resolves this nondeterministic communication across processors by marking 
the connection between the processes as an immediate connection (i.e., a connection that assures 
deterministic sampling). Figure 5-6 depicts this architecture and Table 5-4 depicts its properties. 
This change implies that Thread 1 delays its execution until Thread 2 is finished. This delay may 
affect the execution of other threads that execute on Processor 1 (i.e., the schedulability of threads 
on that processor). 

 

Figure 5-6: Deterministic Communication 



 

31 | CMU/SEI-2012-TR-005 

Table 5-4: Properties of First Refinement 

Component Property Value 

Processor 1 Processor Speed 1 GHz 

Scheduling Policy Rate-Monotonic 

Processor 2 Processor Speed 1 GHz 

Scheduling Policy Rate-Monotonic 

Network 1 Bandwidth Capacity 512 Bytes 

Message Scheduler CANBus 

Reliability Unreliable 

Process 1 Memory Requirement 3 MB 

Process 2 Memory Requirement 1 MB 

Thread 1 Activation Pattern Periodic  

Period 30 s 

Thread 2 Activation Pattern Periodic  

Period 30 s 

Plane Status Size of Memory 30 KB 

Sense Plane Status WCET 1 s 

Calculate Trim Pos WCET 1 s 

Modify Trim Pos WCET 1 s 

Update Local Status WCET 1 s 

Sense Plane Status → Update Local 
Status 

Synchronization Synchronous 

Reliability Unreliable  

Message Size 128 Bytes 

The final refinement introduces reliable communication needed for the state transition pattern. We 
achieve this by making the network protocol reliable, such that no messages can be lost between 
the two processors. If the immediate connection between the two processors is bound to a reliable 
network, no messages that flow over the connections will be lost. Figure 5-7 presents the 
architecture for this refinement and Table 5-5 presents its properties.  

 

 

Figure 5-7: Final Refinement 
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Table 5-5:  Properties of the Final Refinement 

Component Property Value 

Processor 1 Processor Speed 1 GHz 

Scheduling Policy Rate-Monotonic 

Processor 2 Processor Speed 1 GHz 

Scheduling Policy Rate-Monotonic 

Network 1 Bandwidth Capacity 512 Bytes 

Message Scheduler CANBus 

Reliability Reliable 

Process 1 Memory Requirement 3 MB 

Process 2 Memory Requirement 1 MB 

Thread 1 Activation Pattern Periodic  

Period 30 s 

Thread 2 Activation Pattern Periodic  

Period 30 s 

Plane Status Size of Memory 30 KB 

Sense Plane Status WCET 1 s 

Calculate Trim Pos WCET 1 s 

Modify Trim Pos WCET 1 s 

Update Local Status WCET 1 s 

Sense Plane Status → Update Local 
Status 

Synchronization Synchronous 

Reliability Reliable  

Message Size 128 Bytes 
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6 Architectural Dependencies Catalog 

The purpose of the ADC is to support a modeler in characterizing the runtime architecture of an 
embedded software system and identifying the assumptions related to the computer system 
associated with that architecture.  

The root cause areas identified in Section 3.4 are reflected in this catalog through application 
patterns, computer platform components, and deployment bindings as follows:  

• End-to-end flow of data streams is a generalization of several application patterns such as the 
control loop, message processing, and sensor/signal fusion. 

• Distributed communicating state machines is a generalization of several application patterns 
such as hybrid control in control loops, redundancy management logic of replicated 
distributed system components, and state change/transition communication such as 
application hand-shaking protocols.  

• Virtualized resources is an abstraction of several runtime architecture concepts such as 
scheduling of concurrent thread execution, time and space partitioning of processors and 
networks, multi-processor and multi-core computing platforms, and globally synchronous 
execution semantics versus hardware running asynchronously through separate clocks.  

• Resource availability deals with the capacity of processor, network/bus, and memory 
resources actually available for the execution of the embedded software application system. 
The resource demand of the application is mapped onto the resource capacity of the computer 
platform through deployment bindings. 

The ADC is organized in four tables that guide the designer from a general categorization of the 
application domain to specific modeling requirements to evaluate potential problems in a planned 
upgrade. The first table (Table 6-1) contains a mapping of application categories to common 
application patterns used in these categories. The second table (Table 6-2) contains a mapping of 
application categories to common OQA-specific system properties that are important to honor in 
these categories. From these categories then, we use the last two tables to map each of the 
application patterns (Table 6-3) and system properties (Table 6-4) to the modeling and analysis 
requirements.  

We use the tables of the catalog as follows. First, using Table 6-1, the designer should identify the 
application category to which the system being upgraded belongs. For instance, for the automatic 
trimming adjustment in the example in Section 5, we would choose “Control System.” We use the 
application patterns column as a checklist to verify whether any of these common patterns are 
present in the system. For our example, we would choose “Control loops.” 

Second, using Table 6-2, we identify the OQAs we would need to check, such as hard deadlines, 
utilization, latency jitter, end-to-end deadlines, and reliability.  

Third, using Table 6-3, we take the application patterns that were present in our system (control 
loops and time-triggered activities) and identify the common assumptions that these patterns make 
and the recommended implementation pattern. In our example, the assumptions would be minimal 
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sample processing jitter, and the implementation patterns would be periodic real-time tasks. Note 
that the rows in this table also list what we need to model to be able to explore the OQAs of 
interest.  

Fourth, using Table 6-4 and taking the OQAs identified in Table 6-2, we get additional modeling 
requirements for each OQA. This procedure would then give us the recommended modeling 
details that we need to include and the OQAs we need to check.  

Based on the identified information from the ADC, we create the AADL model. Section 7 
provides guidance on what to model in terms of AADL concepts and properties and which 
analysis to run. 

6.1 Application Categories to Application Patterns 

Table 6-1: Application Category to Patterns 

Application Category Application Patterns 

Control System: 
Continuous time control and modal hybrid control 

• Control loops 
• State change/transition communication  
• Replication  

Signal Processing: 
Multiple data streams and operational modes 

• Sensor/Signal fusion  
• State change/transition communication 
• Replication 

Multimedia: 
Multiple streams and Quality-of-Service levels and concurrent 
processing 

• Sensor/Signal fusion  
• State change/transition communication 
• Replication 

Mission Control: 
Message fusion into common blackboard with security concerns 
and operational modes and processing capacity 

• Message processing/fusion 
• State change/transition communication  
• Shared data communication  
• System partitioning 
• Replication 

This table shows the patterns of each of the application categories in underlined text. For example, 
the primary patterns of a control system are control loops to represent continuous time-sampled 
processing of sensor data to generate actuator control signals and the state change/transition 
communication pattern to represent coordination of discrete hybrid control states. In the case of 
signal processing, we have sensor/signal fusion to represent handling of multiple interacting data 
streams and state change/transition communication to represent coordination of operational mode 
state machines. The multimedia application category deals with multiple media streams that 
require time synchronization (sensor/signal fusion) and operate in several discrete QoS levels 
(state change/transition communication). The category mission control does message processing 
and fusion to maintain a common operational picture (shared data communication as blackboard 
implementation) with operational modes (state change/transition communication) and system 
partitioning to address security concerns with respect to the information. 

All four application categories may use the replication pattern (shown without underlining) for the 
following reasons: redundancy for fault tolerance and extra capacity to improve throughput or 
reduce response time. The replication pattern uses state change/transition communication to 
implement its redundancy management logic.  
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6.2 Application Categories to OQA-Related System Properties 

Table 6-2: Application Category to OQA-Related System Properties  

Application Category OQA-Related System Properties 

Control System • Hard deadlines 
• Latency jitter 
• End-to-end deadlines 
• Utilization 
• Reliability 

Signal Processing • Soft deadlines 
• Response time as soft end-to-end deadline 
• Throughput and utilization 

Multimedia • Soft deadlines 
• Response time as soft end-to-end deadline 
• Latency jitter 
• Throughput and utilization 

Mission Control • Hard deadlines 
• Soft deadlines 
• Response time as soft end-to-end deadline 
• Latency jitter 
• Utilization 
• Availability (mean time to failure) 
• Security (hazard leakage) 

Many of the OQA-related system properties in the above table focus on performance, which is 
affected by variability of the workload and availability of the computer resources and is measured 
in terms of an end-to-end data flow. Similarly, security in the form of confidentiality must 
validate security properties along end-to-end information flows [Hansson 2008]. OQAs such as 
reliability or availability lead to the use of both  

• the Error Model Annex [SAE 2006] for dependability modeling for stochastic predictions 
[Feiler 2007b] 

• replication patterns to achieve fault tolerance through physical redundancy in computer 
hardware and logical redundancy in application software [Feiler 2004]  

6.3 Modeling Requirements for Application Patterns 

Table 6-3 outlines for each application pattern the intent of the application pattern and the 
assumptions the pattern makes. Furthermore, the table suggests the most appropriate model 
representation to capture the application’s intent. In addition, it indicates model representations of 
possible alternate application implementations that we may encounter in actual systems. If the 
application intent and its implementation differ, there is a potential for the implementation to not 
correctly realize the intent or only do so assuming a particular computer platform. Any change to 
the platform may result in incorrect application behavior, typically timing-related misbehavior. 
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Table 6-3: Modeling Requirements for Application Patterns 

Application 
Pattern 

Application 
Intent 

Assumptions Modeling Requirements 

Control loops Sampled 
processing of 
input by periodic 
real-time tasks 

Deterministic 
sampling of 
data stream at 
given rate 

Sampling jitter 
is minimal 

Application intent: periodic threads, data flow via data 
ports and flow specifications  

Alternate implementations: time-triggered activities with 
port-based or shared data communication 

Platform: sync/async platform, scheduling protocol, 
communication protocol and network 

Analysis: schedulability, response time, jitter 

State 
change/transition 
communication 

Coordination 
state 
change/transition 
between state 
machines 

Replication and 
distribution of 
state machines 

Reliable 
ordered 
transfer of 
transitions  

Transfer of 
most recent 
state 

Application intent: queued delivery of ordered transition 
event or state change stream vs. sampling of transferred 
state 

Alternate implementations: event observation by 
sampling of state  

Platform: sync/async platform, delivery guarantees of 
network/protocol 

Analysis: transition observation misses due to latency 
jitter, transient inconsistency due to latency 

Sensor/signal 
fusion 

Time-consistent 
fusion of periodic 
data by 
managed latency 
and time-
stamped 
messages 

Common time 
reference in 
time-stamped 
data 

Latency jitter is 
minimal 

Application intent: periodic threads, data flow via data 
ports or event data ports and flow specifications  

Alternate implementations: event/message-triggered  
activities with port queues, or data sampling with 
application queuing 

Platform: sync/async platform and time source, 
scheduling protocol, communication protocol and network 

Analysis: schedulability, response time, jitter, latency 
delta at fusion points 

Message 
processing and 
fusion 

Timely message 
processing 

Time-consistent 
fusion of data by 
time-stamped 
messages  

Common time 
reference in 
time-stamped 
data 

Application intent: aperiodic threads, data flow via event 
data ports and flow specifications  

Alternate implementations: data sampling (data port or 
shared data) with application queuing 

Platform: sync/async platform and time source, 
scheduling protocol, communication protocol and network 

Analysis: schedulability, response time, jitter, time delta 
at fusion points 

Replication Centralized vs. 
distributed 
redundancy logic  

Physical 
redundancy to 
address 
hardware 
failures 

Application intent: Distributed state transition event 
coordination of time and event-triggered tasks 

Alternate implementations: see State transition 
communication. 

Platform: see State transition communication. 

Analysis: see State transition communication, logic 
validation under asynchronous execution, logic failures, 
communication losses. 

Shared data 
communication 

Coordinated 
shared state 
updates 

Large data 
volume 

Infrequent or 
partial access 

Application intent: synchronized, shared data access by 
independently executing tasks 

Alternate implementations: sampled periodic data 
processing or distributed remote data server 

Platform: sync/async platform and time source, 
scheduling protocol, communication protocol and network 

Analysis: schedulability, blocking times, and priority 
inversion 
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Application 
Pattern 

Application 
Intent 

Assumptions Modeling Requirements 

System 
partitioning 

Resource 
virtualization and 
partitioning, fault 
management, 
multiple security 
levels  

Fault and 
hazard 
isolation 

Application intent: space and time partitioning via logical 
processor and network 

Alternate implementations: Dedicated processor and 
network 

Platform: Processor and virtual processor, network and 
virtual bus (channel) 

Analysis: resource enforcement, fault propagation, data 
integrity (security) 

6.4 Modeling Requirements of Relevant System Properties 

Table 6-4 specifies for each system property the system components that may influence the 
property values, assumptions made when specifying values for these properties, and modeling 
requirements in terms of the application and platform as well as suggested analyses. 

Table 6-4: Modeling Requirements of Relevant System Properties 

System Property System 
Components 

Assumptions Modeling Requirements 

Hard deadlines Processor, network 
as scheduled 
resource  

All processor and 
network resource 
demands are 
known. 

All resource 
capacities are 
known. 

Application: periodic and  aperiodic tasks, shared 
data, immediate and delayed port connections 

Platform: processor with scheduler, network with 
communication protocol, hardware capacities, 
deployment on given processor 

Analysis: schedulability and response time, 
blocking times and priority inversion 

Soft deadlines Processor, network 
as scheduled 
resource 

Known variability of 
resource demand 
and capacity 

Application: periodic and aperiodic tasks, shared 
data, immediate and delayed port connections, 
(sampling) data and (queued) event data ports 

Platform: processor with scheduler, network with 
communication protocol, hardware capacities, 
deployment on given processor 

Analysis: schedulability and response time, 
blocking times and priority inversion, percentage of 
missed deadlines, queuing 

End-to-end 
deadlines 

Computer platform 
(processors and 
networks) as 
scheduled 
resource 

Full control of 
processor and 
communication 
scheduling 

Application: periodic and aperiodic tasks, shared 
data and port connections 

Platform: processor with scheduler, network with 
communication protocol, hardware capacities, 
deployment on platform 

Analysis: schedulability and response time, flow 
latency 

Latency jitter Computer platform 
(processors and 
networks) as 
scheduled 
resource 

Known min/max 
end-to-end 
deadline 
contributors 

Application: periodic and aperiodic tasks, shared 
data and port connections 

Platform: processor with scheduler, network with 
communication protocol, hardware capacities, 
deployment on platform 

Analysis: schedulability and response time, flow 
latency  

Throughput and 
Utilization 

Computer platform 
(processors and 

Known peak loads 

Guaranteed upper 

Application: periodic and aperiodic tasks, shared 
data and port connections 
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System Property System 
Components 

Assumptions Modeling Requirements 

networks) as 
scheduled 
resource 

bound in 
processing time 

Platform: processor with scheduler, network with 
communication protocol, hardware capacities, 
deployment on platform 

Analysis: schedulability and response time, WCET 
inflation 

Reliability and 
availability 

Managed 
replication of 
computer platform 
components 

Physical 
redundancy 

Application: logical replication of tasks and 
connections, redundancy management logic 

Platform: physical replication of processors and 
networks, deployment on platform with explicit 
collocation, noncollocation of application units, 
component fault behavior and probability 

Analysis: availability and reliability, fail-over logic 
consistency, hazard analysis, Failure Mode and 
Effects Analysis 

Security Physical and 
logical security 
boundaries through 
partitions 

Encryption and 
authentication 
infrastructure  

Application: tasks and data interchange via ports 
and data sharing, security levels, and categories 

Platform: processor and network with logical 
partitioning, data communication security 
mechanisms, security policies, deployment on 
platform 

Analysis: secrecy, confidentiality, sanitization 
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7 AADL Modeling and Analysis Strategies 

In this section, we describe the specific strategies used to develop the models required by the 
ADC. We separate these into the application pattern modeling strategies and the OQA modeling 
strategies. In addition, we provide some guidance in determining resource availability in a 
computer platform, which may be less than the available raw capacity. 

It is worth noting that the purpose of this section is not to teach how to model in AADL. Rather, 
we convey the strategies to model, analyze, and understand the result of the analysis to avoid the 
potential problems associated with upgrading the execution platform of an embedded, real-time 
system. As a result, we assume the reader is familiar with AADL concepts (including those 
introduced in Version 2 of the standard),9 which are summarized in the Appendix of this report. 
We will not dwell on the syntax and semantics of the language, but refer the reader to other 
documentation [Feiler 2006, SEI 2009a].10 

Note as well that there is not a single, unified analysis that can be run to discover the entire realm 
of potential problems. We must choose from a collection of analyses to explore areas of problems. 
The purpose of this method is to guide the designer to make these choices. 

7.1 Application Pattern Modeling Strategies 

Central to our approach for developing AADL models representing application patterns is that we 
understand the application pattern’s intent and compare it to the implementation chosen by the 
developer. One example when the intent of the application pattern is to communicate random 
events, each of which is expected to be processed by the recipient, but the implementation 
represents events in state variables that are periodically communicated and sampled by the 
recipient. Such an implementation is sensitive to data transfer timing, input sampling, and 
execution timing. Under some circumstances, the recipient may miss an event. 

7.1.1 Control Loops 

The purpose of control loops is to control continuous time systems (i.e., systems that follow the 
laws of physics). They are designed as sense-computation-actuate loops that periodically sample 
sensor input and compute actuator output in order for the controlled system to reach a desired 
state. The control algorithm assumes that the latency between a sensor reading and output to the 
actuator is known and has little variation (jitter). Sensor readings may be available at a higher 
rate, the control algorithm may down-sample the sensor data stream to a lower rate, and the 
actuator may require its data at a different rate.  

When the data stream is sampled, the control engineer assumes that sampling occurs 
deterministically at well-defined time intervals. This means that a processing step samples every 

 
9  We will refer to version 2 of the AADL standard as AADL V2 from this point forward in this report. 

10  Feiler, Peter H. & Gluch, David. MBE Essentials: An Introduction to the SAE Architecture Analysis & Design 
Language (AADL). To be published by Addison-Wesley. 
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data stream element or that the recipient samples every other element when down-sampling. In 
some cases, the sampled data is passed to the next processing step within the same execution 
frame (mid-frame)—that is, the recipient processes its input within the same frame after the 
sender completes its action. In other cases, the control loop assumes that the data is received by a 
processing step in the next frame (frame-delayed); a control system simulation environment such 
as Simulink provides these execution semantics to the control engineer.  

Studies have shown that control loops are sensitive to latency jitter. Control system stability can 
be affected by differences in the way application software components exchange data or in the 
way the underlying runtime system schedules application tasks [Cervin 2006, Feiler 2008a]. 
Therefore, it is beneficial to represent the expected execution and communication timing 
semantics explicitly in the runtime architecture model of a control system. 

The intent of the control loop pattern is best captured in AADL by using periodic threads for 
processing steps and using devices with periodic processing behavior for sensors and actuators. 
The data is communicated through data ports. The semantics of AADL specify that, by default, 
input is sampled at dispatch time (i.e., threads sample their data port input at the beginning of the 
frame). Flow of data between the sensor, the processing steps, and the actuator is specified 
through data port connections. Data port connections can be declared always to communicate data 
mid-frame (immediate connection) or frame-delayed (delayed connection), such that sampling by 
the recipient occurs deterministically. Data ports are annotated with a data type, and AADL 
ensures that both ends of a port connection have matching types. The data type representation 
may include properties to indicate the base type, the expected range of values, and the 
measurement unit associated with the data. In addition, properties on the port may indicate data 
stream characteristics, such as the expected data stream rate and the capability to handle missing 
elements in the data stream. End-to-end flow declarations are used to specify control loop flows 
of interest, for which latency and latency jitter must be determined. 

Feiler discusses a number of software contributors to latency and latency jitter, such as the 
scheduling protocol, the communication protocol, or the use of partitions as virtual machine 
abstraction in the runtime system [Feiler 2008a]. Similarly, variations in the computer hardware, 
such as processor speed, network speed, and distribution of tasks across processors affect latency 
and latency jitter. Therefore, we model those aspects of the computer platform in AADL and 
specify the binding of the software to the hardware. 

With this modeling information, the analyses that can be used to verify the OQA include flow 
latency [Feiler 2007a]; schedulability and jitter [Singhoff 2005]; near-optimal allocation options 
with bin packing algorithms [de Niz 2006] that can be performed with OSATE [SEI 2009b]; and 
buffer allocation and end-to-end deadlines [Thiele 2000]. If response time and latency are of 
concern, see Feiler’s identification of latency contributors by the runtime architecture and runtime 
system services [Feiler 2007a]. Furthermore, a computational trace of the latency calculation is 
available in an Excel spreadsheet format to help in understanding the actual time contribution of 
each step in the end-to-end flow [Feiler 2009a].  

These resources provide guidance on how to refine the upgraded system to reduce end-to-end 
latency. For example, in the case of migration to a partitioned architecture, the overrun may be 
primarily driven by cross-partition communication; thus, reduction of cross-partition 
communication steps is key to resolving the problem. In the case of missed deadlines, alternative 
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near-optimal resource allocation (thread deployment) options can be explored using the bin 
packing algorithms provided with OSATE [de Niz 2006, de Niz 2008a]. The problem might also 
be due to nondeterministic sampling of the data stream that may result from the implementation of 
the communication through shared variables or insufficient double buffering of port-based 
communication. Such sampling may work well under a static timeline schedule but result in a 
send/receive order race condition under preemptive scheduling or concurrent execution on 
multiple processors or cores. Feiler provides guidance in identifying insufficient buffering and 
user-level send-and-receive service calls as contributors to the problem [Feiler 2008b]. 

The VUV method takes advantage of the semantics associated with AADL modeling concepts for 
a precise specification of the system. By default, AADL assumes that input through data ports is 
sampled at dispatch time (i.e., at the beginning of the frame). Dispatch time sampling cannot be 
guaranteed if the sampling is initiated by the application code. If each processing step performs its 
own sampling, input will be sampled at the time the task executing the processing steps actually 
executes on the processor. Even if sampling of input is consolidated into an input/output (I/O) 
task executing at highest priority, sampling may not occur at the beginning of the frame. For 
example, if the application tasks are mapped into a partition of a partitioned runtime system such 
as ARINC653, then the I/O task executes at the beginning of the window slot within the frame, 
which may not be the first slot. AADL gives us the ability to specify input sampling times other 
than dispatch time. Partitions can be modeled as virtual processors, including the specification of 
partition allocation to window slots. This information can then be used to determine whether 
changes in the computer system affect end-to-end latency and latency jitter (and thus, the stability 
of the control system). 

When examining the actual system, we may encounter an implementation that differs from the 
application intent described above. One common implementation approach is to maintain the 
control data in a common data area and have processing steps read and write this data area 
directly. Data received from a different processor or a device is placed into the common data area 
by a high-priority I/O task at the beginning of each frame. The same task is also responsible for 
providing data from the common data area to devices and to applications on other processors. 
Such implementations are typically combined with a cyclic executive scheduling protocol (i.e., a 
periodic task that executes different processing steps on the same processor in a fixed order). The 
execution order of the processing steps determines whether data is passed mid-frame or frame-
delayed. Note that a change to a preemptive scheduling protocol affects the execution order. 
Similarly, allocation of tasks to different cores of a multi-core processor results in concurrent 
execution of those tasks. This results in frame-level changes to latency and latency jitter.  

AADL supports modeling of shared data between multiple threads. Thus, we can model the 
implementation as is. We use data access features on threads or subprograms to indicate which 
data element in the common data area is accessed. Using access rights, we can indicate whether a 
thread or subprogram writes or reads the data. Typically, only one processing step writes data into 
a particular data element, and one or more processing steps read it. They may read it within the 
same frame if they execute after the writer or in the next frame if they execute before the writer. 
We can record the expected execution order in order to achieve the appropriate data flow in terms 
of mid-frame or frame-delayed transfer. We can do so through either  

• a call sequence for subprograms as processing steps or 
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• an additional property on threads that indicates which threads are expected to execute later in 
the same frame, effectively documenting mid-frame communication 

This model can then be mapped into a data-port-based model with port connections and input 
sampling during execution to explicitly document the intended data flow and support end-to-end 
latency analysis. The analysis can take into account the scheduling protocol, thread binding to 
processors, and sampling or queuing delays of communication protocols to determine whether the 
desired latency and jitter are achieved [Feiler 2008c]. 

7.1.2 State Transition Communication 

Many embedded systems are stateful, and exchange of state information is common practice. 
These state behaviors take on different forms. A state may represent an operational mode, and a 
state machine with transitions between different mode states reflects expected mode changes. 
Multiple subsystems or system components may have mode-dependent behavior with respect to 
the same mode. In this case, the mode state must be made accessible to them. These subsystems 
or components may operate differently according to the current mode, or they may take special 
action every time a mode transition occurs. In the former case, the recipient is interested in the 
most recent state value, while in the latter case the recipient must be informed of every transition 
event. 

We may also have the situation where different subsystems have their own operational modes, 
and the challenge is to coordinate these modes and their transitions. For instance, the electronic 
stability control (ESC) of a car involves braking individual wheels to change the rolling forces of 
the car in a curve. As part of this process, it is important to coordinate with the cruise control (CC) 
system. Hence, when the ESC transitions into the braking mode, it needs to inform the CC 
system. If the transition communication is lost, bad things can happen, such as the braking of a 
wheel by the ESC system while the CC system accelerates. 

Other forms of discrete system states exist in hybrid control systems, in subsystems and 
components that offer different QoS levels, in replicated stateful system components that require 
coordination of state, in the redundancy logic of fault tolerant systems, and in application-level 
interaction protocols, to name a few. In all these cases, it is important to identify whether the 
objective is to communicate the most recent state or for the recipient to have critical awareness of 
every state transition as a separate event.  

State transition communication is an application pattern that falls into the distributed 
communicating state machines root cause area of system-level faults. Section 3.4.2 provides some 
insights on possible analyses to use to identify upgrade impact on the embedded application 
software for this pattern. We can use the AADL port communication semantics and properties to 
document explicitly the intended communication of state or state transition events.  

If the most recent state is of primary interest, the state managed by a component can be made 
accessible to others through a data port. The recipients can sample the state at their leisure, and 
port connections identify all interested parties. The recipient may miss an intermediate state if its 
sampling rate is slow or if the data transfer is over an unreliable communication channel, but it 
will always operate on the most recent state it received. As an alternative to using data ports, we 
can use data access features to a shared data component representing the state variable. The port-
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based model is more amenable to distributed computer platforms, while the shared-data 
component model assumes a computer system with physically or logically shared memory.  

If state transitions are important, the application intent of responding to every state transition 
event is best reflected in event ports or event data ports with queues. This ensures that at the 
application level all events are passed on as long as the communication medium ensures 
guaranteed and ordered delivery of events or messages. In other words, we want to annotate the 
AADL bus and virtual bus components of the underlying computer platform with the respective 
QoS property values. 

It is a common practice to implement state communication by transferring the current value of a 
state variable even though the state transitions are of importance. This is particularly the case if 
the application primarily performs periodically sampled processing. In this case, the recipient 
samples the state value at a given rate and deduces state transition events by comparing the 
received state value against the previous value. For example, a button pushed in an operator 
interface is mapped into a Boolean state variable. The push event is effectively transformed into a 
“pulse” signal, setting the value to true for a limited time before being reset to false. If we model 
such an implementation in AADL, using data port sampling or shared data component access, we 
would have to augment the model with a property to reflect the length of this pulse in order to 
ensure that the pulse is not missed by the sampling recipient.  

For communication of state transition events, we must investigate potential causes of loss. One 
possible cause is the reliability and service guarantees of the network or protocol, which can result 
in the loss of part of the transmission involved in the state communication. Another potential 
cause is the timing of the communication and the sampling by the recipient, effectively a 
potentially nondeterministic race condition between the transfer and the input sampling. Both 
causes of loss must be evaluated along with the consequences of such a loss. An example of an 
analysis technique that can help in this process can be found in a paper by de Niz [de Niz 2008a]. 
The problem might also be in the implementation of the communication through shared variables 
or insufficient double buffering of port-based communication. Feiler provides guidance in 
identifying buffering and user-level send-and-receive service calls as contributors to the problem 
[Feiler 2008c]. 

7.1.3 Sensor/Signal Fusion 

Sensor/signal fusion is sensitive to the sampling times of the fused data. That is, if two signals 
from two different sensors are being fused in a particular thread, the sampling times of these two 
signals must be close enough to each other that they can be considered simultaneous readings. As 
a result, we model end-to-end flows from the sensor to the fusion thread and evaluate their flow 
latency. The domain expert (control system engineer or signal processing engineer) must evaluate 
whether differences in the flow latency between the data streams being fused are within the 
allowable range. The modeling elements of the control loop are sufficient for this analysis. 

Sensor/signal information represents some physical system state. If the state information is sizable 
and communication bandwidth is low, state changes are often communicated, a situation that is 
effectively equivalent to the state-transition-communication issue discussed in Section 7.1.2. For 
example, a radar system may track objects and communicate changes in the form of track updates. 
Every state change is important and must be communicated and processed in order for the system 
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to maintain its consistency and data integrity. Therefore, we want to reflect in the AADL model 
whether the sensor/signal data represents state or state changes and then examine whether the 
particular implementation of sensor/signal state ensures delivery of state changes.  

7.1.4 Message Processing and Fusion 

Message processing and fusion may deal with time-sensitive fused data. That is, if two messages 
from two different sources are being fused in a particular thread, the time stamp of the two 
messages must be close enough to each other so that they can be considered the same observation. 
We define end-to-end flows from each source to the fusion point and evaluate their flow latency. 
The domain expert (mission system engineer or mission expert) must evaluate then whether the 
time shift between the message streams is within the allowable range.  

We model the intent of the application through event data port communication with queues. End-
to-end latency analysis takes into account queuing latency. This allows us to determine how long 
messages from different streams must be held in queues (i.e., the size of these queues, in order to 
achieve time-consistent fusion). 

We explicitly model the concept of time stamping by a time server component or by utilizing the 
time service on a processor. If the system is asynchronous (i.e., if different processors operate 
with separate clocks), we use the synchronization domain notion introduced in AADL V2 through 
the Reference_Time property. 

We also want to reflect, as a property of the message stream (i.e., the ports through which the 
message streams are communicated), whether the fusion algorithm assumes that every message 
arrives or can compensate for missing messages on one or more of the data streams. We can then 
apply the same analysis as for state transition communication to ensure that the application 
implementation meets the intent, even when changes are made to the computer platform or 
application deployment binding. 

7.1.5 Replication 

Replication is a common technique for achieving redundancy in order to improve the reliability of 
a system. When modeling a replication pattern, we must consider three aspects of the pattern. 
First, the replicated component itself has state, and we have to ensure that this replicated state is 
maintained consistently between the two replicates. Maintaining state consistency between 
replicates is typically achieved at switch-over when the primary component fails, or state is 
periodically exchanged when the replicates are active. In the former case, we specify data port 
connections between the replicates and indicate that they are active only during a mode transition. 
In the latter case, we represent the periodic interchange through ports and specify the rate of data 
exchange, which may be different from the processing rate of the replicated component, as a port 
property. 

The second aspect of the replication pattern is the redundancy logic that manages the replicated 
components. The logic reflects whether the pattern uses hot or cold standby in a primary/backup 
configuration [Budhiraja 1992] or whether all replicates are active and a voter or observer 
examines their output. The logic may also include the ability of an operator to control whether to 
operate in critical mode with all active replicates or in noncritical mode with a primary/backup 
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configuration. In non-critical mode, the operator has the ability to choose which replicate is the 
primary (e.g., in a dual-flight guidance system) [Miller 2005].  

The redundancy logic can be specified in AADL as modes, complemented with Behavior Annex 
subclauses, and validated for correctness under nominal operation and under various failure 
conditions. For instance, in a primary/backup replication, the failure of the communication 
channel between the replicates can lead to having two primaries or no primary at all. The 
redundancy logic itself may be replicated and distributed across redundant processors together 
with the replicated application software component. Effectively, we have a state-transition-
communication pattern with two identical state machines reflecting the current (critical/non-
critical) operational mode, and we have two state machines that are the mirror image of each other 
reflecting which instance of the primary/backup replication is active. Incorrect coordination logic 
or incorrect implementation of the coordination can lead to loss of transition events and safety 
hazards. Examples of analysis of these situations can be found in work by Miller and by de Niz 
[Miller 2005, de Niz 2006]. 

The third aspect of replication patterns to be considered is the monitoring of output of replicated 
components to detect possible faulty component behavior. This monitoring may take the form of 
an observer pattern with the output being monitored in parallel with its being sent out or of a 
guard pattern in which the output passes through a voter before becoming available as output. The 
two variants of the redundancy pattern, illustrated in Figure 7-1, differ in that the first has 
transient fault propagation (i.e., bad data output is sent before being detected by the observer) and 
the second results in longer latency. We want to record these effects for each pattern to ensure that 
components receiving the output can handle transient bad data or increased latency. 

 

Figure 7-1: Observer and Guard Redundancy Pattern 

7.1.6 Shared Data Communication 

The shared data communication pattern may represent a particular application implementation 
(e.g., communication between threads via shared variables such as the communication semantics 
of Simulink blocks). We have already addressed this issue in previous sections. Here we focus on 
application architectures, whose intent is to provide shared data communication. Examples of 
such architectures are blackboard architectures (global common data area), database systems, and 
systems maintaining situational awareness.  

The application intent of such architectures is to provide read-and-write access to a shared data 
component for a number of application tasks by coordinating concurrent access to ensure data 
integrity. In AADL, we express such an architecture via data components; connections from data 
access features are modeled by application components such as threads. An access right property 
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of the data-access feature indicates the desired read-and-write access. A concurrency control 
protocol property on the data component indicates the mechanism used for managing concurrent 
access. Some implementations may rely on a particular scheduling protocol, such as non-
preemptive scheduling and data access from a single processor to ensure mutually exclusive 
access. We need to ensure that such assumptions about the runtime system are valid and that the 
application source code actually uses the specified mechanism. 

In distributed systems, a common way to implement a shared data communication architecture is 
through a server. AADL supports modeling of server architectures through subprogram access 
features and connections. The server is defined as a process with threads that provide access to the 
services (provides subprogram access). Users of the service require subprogram access, and 
access connections connect the two. Properties are used to indicate whether a server is multi-
threaded in that it can service multiple service requests simultaneously (a standard property in 
AADL V2). 

7.1.7 System Partitioning 

System partitioning is an architectural pattern that provides isolation between application 
components through processor and memory virtualization concepts in the runtime system. System 
partitioning can be used to meet safety and security requirements. There are two aspects to 
modeling in this architectural approach: modeling of desired isolation regions in the application 
and modeling partitions as logical resource partitions. The ARINC653 Annex of the AADL 
standard provides guidance on how to represent ARINC653-compliant system architectures in 
AADL [SAE 2011]. 

The process concept in AADL represents a protected address space that is expected to be enforced 
at runtime by the hardware and operating system. In other words, threads operating within a 
process cannot affect data in other processes except through explicitly declared communication 
channels, such as ports and access to shared data. The computer platform is represented by 
processor, memory, and bus components that are tagged with the security or safety level for which 
they have been approved. In addition, we can use the AADL V2 virtual processor and virtual bus 
concepts to represent logical partitions of processors and buses. A virtual processor represents a 
virtual machine that enforces both space and time partitioning on a processor. A virtual bus 
represents a virtual channel that ensures bandwidth and no cross-channel data leakage. When an 
application with security and safety requirements is bound to the computer platform, we can 
validate that the safety and security requirements expressed at the application level are ensured by 
the computer platform. Further modeling guidance can be found in work by Delange, Pautet, and 
Feiler [Delange 2009a]. 

For the purpose of reliability and safety analysis, the Error Model Annex of the AADL standard 
[SAE 2006] provides a way of capturing hazard and fault information as annotations to the AADL 
architecture model of a system [Feiler 2007b]. From this annotated model, appropriate analysis 
models are generated to perform these different analyses consistently with the architecture. 

For the purpose of security analysis, the SEI has defined a property set to represent security 
models, such as Bell-LaPadula, in AADL models [Hansson 2008]. Security levels and data 
categories are used to identify the degree of protection desired for data communicated through 
ports and the credentials of tasks operating on the data. Similarly, application components can be 
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characterized with different safety levels under which they are expected to operate. Given this 
information, we can establish whether the way the application components interact violates 
security and safety rules at the logical level.  

7.2 OQA Modeling Strategies 

For each of the OQAs presented in Table 6-4, we discuss what kind of modeling is necessary, 
how to perform this modeling, and what kind of analysis is needed.  

7.2.1 Hard Deadlines 

Some applications require that processing be completed before a well-defined time—the deadline. 
Otherwise, the resulting output is of little value. For that purpose, we need to model the relevant 
tasks, specify their dispatch protocol as time-triggered (periodic) or as event/data-triggered 
(aperiodic, sporadic, or timed), their deadline relative to their dispatch time, and their resource 
demands on the processor in terms of execution time. In the case of event/data-triggered tasks, we 
also specify arrival rates with an upper bound. Once the tasks are bound to a processor with a 
specified scheduling protocol, we can use an appropriate scheduling analysis tool to determine 
schedulability (i.e., whether all deadlines are met).  

Schedulability analysis assumes that task WCETs are not exceeded and that there are no 
additional resource demands on the processor not reflected in the model. Furthermore, it is 
desirable to perform such resource analysis early in the development, at which time execution 
times may be initial estimates or task details may not even be known. We can address uncertainty 
in the specified execution time of tasks by performing sensitivity analysis with respect to 
schedulability (i.e., examine by how much execution times can vary before the system becomes 
unschedulable). If we do not have the details of a task architecture yet, we may represent 
budgeted resource demands of subsystems (i.e., the rate at which such subsystems intend to 
operate) and compare them against the available resources on a processor. This provides an early 
insight as to whether exceeding resource demand will result in missed deadlines. 

A similar resource scheduling analysis can be performed for networks. The resource demand for 
communication is determined by the port connections between subsystems and tasks that are 
bound to particular buses. The bus protocol (i.e., a sampling protocol such as 1553B or CAN-bus 
or queuing message protocols) determines the type of analysis to be performed to meet 
communication deadlines. 

7.2.2 Soft Deadlines 

Soft deadlines are similar to hard deadlines; one difference is the consequence of missing the 
deadline. Two scenarios are possible here. One scenario is that a missed deadline is acceptable but 
is treated by the recipient of the data stream as a missing data element. This is sometimes referred 
to as firm deadline. Schedulability analysis can determine at what rate missed deadlines are 
encountered. This rate can then be compared against the miss-rate that is acceptable to the 
recipients, as indicated by a property on their incoming ports. 

The second soft deadline scenario is that completion time has a certain distribution that may be 
specified or determined through queuing analysis. Some completion times later than the specified 
deadline are acceptable as long as they are bounded. In this case, the recipient will still process the 
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data, but again may specify an acceptable upper bound or an acceptable average for the age of 
received data. Again, scheduling analysis can provide results that can be validated against the 
expectations of the recipient. 

7.2.3 End-to-End Deadlines 

End-to-end deadlines can be analyzed for end-to-end flows. For these, then, it is important to 
model the end-to-end flows of interest with an associated end-to-end deadline. With this model, 
the flow latency analysis can be run to verify that the latency is within bounds [Feiler 2007a, 
Feiler 2008a]. In addition, various analysis tools (e.g., Cheddar [Singhoff 2005] and Rapid RMA 
[Tri-Pacific 2011]) can be used for analysis more specific to the scheduling policy and network 
protocols of interest in our architecture. 

7.2.4 Latency Jitter 

Jitter can be evaluated for end-to-end flows. We determine jitter bounds through end-to-end 
response time or latency analysis, taking into account best-case execution time and WCET, as 
well as variation in other contributors to latency and response time, such as communication and 
queued processing or preemption [Feiler 2007a]. 

7.2.5 Throughput and Utilization 

Throughput refers to the amount of processing supported by a system, typically in terms of 
number of processed items per unit of time. Utilization refers to the degree to which computer 
platform resources are used to perform the tasks. 

Throughput analysis can be supported in a stochastic manner if distributions of arrival rates and 
processing times and rates are provided. These can be expressed through properties on tasks and 
ports and used as input to a stochastic analysis tool. In the case of communication throughput, 
these would be property values indicating output rates and data sizes at the application level, as 
well as protocol overhead and transmission capacities of the network components of the computer 
platform. Early in the development process, such data may not be available and the details of the 
task architecture may not be known. In this case, we can assign rate and processing budgets to 
application subsystems and available processing capacity to computer platform components and 
use those to calculate early throughput estimates. Note that the model has a record of the 
assumptions used in the calculation of these estimates.  

Utilization is determined as part of scheduling analysis. In the case of stochastic workloads, the 
workload may be reflected as a statistical distribution. Early in the development process, we can 
use resource budget estimates associated with the system architecture model at the level of detail 
available at the time (e.g., subsystem or task-level model) to determine the estimated utilization. 

7.2.6 Reliability and Availability 

Reliability and availability reflect the fact that system components may fail and, as a result, the 
system as a whole may not be able to provide service. AADL has an Error Model Annex [SAE 
2006] that allows us to associate probability of fault occurrence in system components and 
probabilistic error propagation, taking into account error masking and repair. Detailed guidance to 
dependability modeling with the Error Model Annex is provided in Dependability Modeling with 
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the Architecture Analysis and Design Language (AADL) [Feiler 2007b]. This error modeling 
capability supports hazard analysis, failure mode and effects analysis (FMEA), fault tree analysis 
(FTA), and stochastic reliability and availability analysis. 

Reliability and availability are improved with redundancy. Physical components such as sensors 
and other devices as well as computer platform hardware components are replicated such that a 
backup component can fill the void when a component fails. Software that runs on failing 
computer hardware must be replicated and bound to the hardware replicate in order not to lose 
software functionality. In other words, we must ensure that different copies of the same software 
are deployed on different instances of computer hardware. This requirement can be expressed in 
AADL by a property indicating that a replicated component must not be collocated. This 
constraint can then be validated for a given deployment binding, or an analysis tool determining a 
deployment binding may take this constraint into account [de Niz 2008b].  

Reliability and availability analysis makes a set of assumptions about the system, the lack of 
collocated software replicates being one example. Other assumptions are the consistency and 
correctness of the redundancy management logic and a source code implementation that complies 
with the logic specification. The validation of this assumption has been discussed in Section 7.1.5. 

7.2.7 Security 

While there can be multiple security concerns that could be modeled in AADL, we focus on 
confidentiality with three aspects: confidentiality, integrity, and sanitization. Confidentiality 
addresses concerns that sensitive data should only be disclosed to or accessed by authorized users 
(i.e., enforcing prevention of unauthorized disclosure of information). Data integrity is closely 
related, as it concerns prevention of unauthorized modifications of data. 

To validate the confidentiality of a system, we ensure that a modeled system conforms to a set of 
common conditions that support system confidentiality independent of a specific reasoning 
framework for security. We map concepts of subjects operating on objects by permissible access 
(read, execute, append, and write), found in the Bell-LaPadula model, into components and ports 
in the AADL model, enabling us to model and validate security at both the software and hardware 
levels [Hansson 2008]. For that purpose, we have defined a set of properties to represent security 
levels and information categories to identify the degree of protection desired for data 
communicated through ports and the credentials of tasks operating on the data. Application 
components represent the subject with permitted security-level and information categories. 
Annotated ports represent the object (i.e., the data type and the security level and category of the 
data). Connections in the AADL that represent information flows and sanitation steps are 
indicated as part of a flow specification.  

With this data, it is possible to discover incorrect communication of confidential data (to a 
component that does not have the privilege to access it) or incorrect sanitization structures. The 
security plug-in in OSATE can be used to analyze the security problems in the architecture 
[Hansson 2008]. 

In addition, we can model the system partitioning in the runtime system to ensure that the 
computer platform supports information isolation and the application deployment binding is 
consistent with the partitions as discussed in Section 7.1.7. 
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7.3 Computer System Resource Management 

The actual performance of processors available to the application is affected by the overhead of 
the operating system and other infrastructure services, as well as by resource contention between 
applications and system services sharing resources. The operating system overhead of an 
application can be reflected in net processor cycles available to the application, or it can be 
included in the execution time demands of the application thread. We can also model the 
operating system services as a second runtime architecture layer with its own thread model to 
capture concurrent processing activity at that level. We can do so using virtual processors and 
virtual buses or by creating a separate runtime architecture model of the operating system layer 
and associating it with the Implemented As property to the computer system abstraction of the 
original model.  

Resource contention affects resource availability to the application. In this section, we review 
three important issues that affect real-time performance:  

1. bounds on priority inversion  

2. bounds on cross partition interference under IMA  

3. rate group schedulability margin  

Although we use avionics as an example, the techniques discussed here are also generally 
applicable to other real-time embedded systems. 

7.3.1 Bounds on Priority Inversion  

In a static priority scheduling setting based on RMA, priority inversion can occur when a high-
priority task is delayed by one or more lower priority tasks. Bounds on priority inversions, if not 
calculated correctly, will render an RMA analysis invalid, leading to unexpected timing failures 
during integration or deployment. Bounds on priority inversion must be computed for each type of 
shared resource, especially bounds on the duration of priority inversion on 

• CPU sharing 

• I/O interfaces 

• each communication switch 

The basic concept of priority inversion is now well known. However, a significant number of 
engineers focus only on priority inversion in the CPU and fail to analyze priority inversion in 
complex I/O interfaces such as a Peripheral Control Interface (PCI) bus or a network switch. As a 
result, real-time performance failures during system integration or deployment occur in systems 
with a heavy I/O or communication load.  

The experimental investigation of priority inversion bounds must be guided by the actual system 
architecture and deployment configuration rather than a benchmark configuration. For example, a 
PCI bus has many different physical configuration and bus transaction types. However, the bound 
on priority inversion is specific to these physical configuration and selected bus transaction types. 
As another example, priority inversion for application tasks depends on the specific real-time 
operating system and the real-time synchronization protocol that it implements. 
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7.3.2 Bound on CPU Stall Induced Worst-Case Execution Time (-) Inflation 

RMA uses each task’s WCET as part of the required inputs for schedulability analysis. Many 
developers assume that the WCET of a task remains the same when it runs alone or runs together 
with other tasks. Unfortunately, this is not true.  

As illustrated in  Figure 7-2, modern “smart” I/O devices can be independent bus masters. If a 
task’s cache was first invalidated by prior tasks, the current task will try to reload the cache with 
instructions across the front side bus. If there is an ongoing bus transaction on behalf of other 
tasks, the filling of the cache can be significantly slowed because a typical bus master uses a 
round-robin sequence for competing bus transactions. This bus contention results in a significant 
slowdown of the task execution. When a PCI bus is used, the execution time of the task has been 
found to increase as much as 37% in laboratory experiments [Nam 2009]. Indeed, this a key 
reason for frame overruns that frequently occur when there is heavy I/O.  

 

 Figure 7-2: Resource Contention on PCI Bus  

CPU stall-induced worst-case execution time (SWCET) has ominous implications for modern 
IMA architectures because many users of IMA architectures mistakenly believe that the CPU 
cycles allocated to each ARINC653 partition are isolated from those in other partitions. When 
tasks in the one partition invalidate the cache of a later partition, tasks in the later partition must 
reload their cache via the front side bus. The bus is subjected to the interference of direct memory 
access (DMA) from other partitions. Thus, a partition dedicated to a safety-critical, real-time 
application can be adversely affected by I/O for non-safety-critical applications in other partitions. 
The solution for this problem is to have an integrated CPU and I/O real-time architecture, which 
is, however, outside the scope of this report. We are concerned with calculating the bound on 
SWCET, especially in the context of IMA because most avionics systems have widely adopted 
ARINC653.  

To measure the SWCET for IMA systems, we must do the following: 

1. Flush the cache before the application in the next partition starts. 

2. Conduct heavy DMA transfers to account for worst-case DMA workload on the front side 
bus as permitted by the existing design. 
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3. Measure the increase of WCET as compared with the case in which there is no DMA on the 
front side bus. 

4. Add SWCET to WCET in the RMA analysis for all of the hard-real-time tasks. 

Schedulability analysis and bus delay analysis is done using a tool called ASIIST (Application 
Specific I/O Integration Support Tool) [Nam 2009]. An analysis plug-in to OSATE, ASIIST reads 
in AADL models and can perform schedulability analysis with I/O cache fetch interference and 
I/O bus delay analysis for an IMA system configuration. 

7.3.3 Rate Group Schedulability Margin 

In a real-time system using fixed-priority scheduling or rate group scheduling, a task can miss its 
deadline with a workload considerably less than 100%. A rate group schedulability margin can be 
estimated by using exact schedulability analysis to compute the worst-case margin for each rate 
group (margin = deadline - worst-case completion time). The system peak load is the maximum 
utilization of the system given the minimal margin over all of the rate groups. However, margin 
and peak load computation is correct only if the estimation of WCET, the bound on priority 
inversion, and the bound on SWCET are all valid. 

Note that this computation for peak load is very different from the peak load measurement 
generally reported for most computer systems. Most peak load values are generated by measuring 
the utilization of a background task or by summing the measured loads of each rate group. These 
methods for computing peak load lead to highly optimistic views of the worst-case system 
performance. 

During system integration, an experimental measure of rate group schedulability margin and peak 
load should be conducted to guard against inadvertent mistakes in parameter estimation, as 
follows:  

1. Replace all tasks not yet written with dummy tasks using busy loops and dummy I/O. 

2. Run all the tasks under stress scenarios, including lower priority tasks. Running low-priority 
tasks is important to check for priority inversions that may have been overlooked in analysis.  

3. As permitted by the design, the engineer should run tests with heavy I/O workload and heavy 
application CPU workload concurrently.  

4. Program the logic analyzer and capture the minimum schedulability margin for each rate 
group task (margin = deadline - completion time). 

5. Plot the schedulability margin for each task: (system peak load =1.0 - the minimum of the 
task schedulability margins).  

IMA is relatively new, and many engineers and even system architects are not discovering until 
system integration test that interpartition interference can be as high as 30-40%. Keeping inter-
partition interference to a minimum requires the following steps: 

1. Partition structures with low-priority inversion and low interpartition interference. 

2. Measure, validate, and track bounds of priority inversion and interpartition interference. 

3. Develop a schedulability model. 

4. Estimate, measure, and track schedulability margin and peak load. 
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8 Broader Applicability 

Because the key stakeholder for this report is the Army PEO for Aviation, this report is 
intentionally focused toward avionics platform upgrades. However, these practices are applicable 
to other organizations that build and manage embedded systems. Examples of systems with 
embedded software that could benefit include satellite flight software, tactical communication 
systems, and terrestrial war-fighting vehicles. In addition, the VUV method is applicable for a 
wide range of problems related to obsolescence of hardware, technology refresh, and 
requirements for new capability. 

To support the assertion that there is broad applicability for this work, we have included a few 
additional examples of mismatched assumptions that might have been avoided if architecture-
centric, model-based engineering practices had been applied. One example of mismatched 
assumptions is the translation of functionality into application software causing the destruction of 
Ariane 5 during the rocket’s maiden flight. Overflow of a 16-bit signed integer variable in reused 
Ariane 4 software to perform a function that was “not required for Ariane 5” was not caught due 
to a disabled handler [Wikipedia 2010]. The reason for the overflow was the representation of 
vertical velocity, which exceeded the 16-bit signed integer range due to a different altered flight 
path. A consistency check of value ranges between the value range of the variable and the 
expected value range of the domain parameter could have discovered this inconsistency. 

In the late 1990s, a well-intentioned attempt to improve performance of a satellite ground station 
mission software had unplanned side effects. The subsystem tracking objects close to a spacecraft 
had originally sent a complete map of the objects to the command and control subsystem. In order 
to reduce the load on the network, a change was made to communicate only changes to the map. 
Unfortunately, this communication occurred over a network protocol that drops packets under 
overload conditions. As result, during integration testing, it was discovered that state changes 
randomly were not delivered. In other words, the data representation of the communicated data 
stream assumed guaranteed delivery.  A consistency check between the communication QoS 
assumption of the application and the QoS provided by the protocol could have discovered this 
inconsistency. 

When laptops with dual-core processors came out, iTunes crashed randomly when ripping a 
music CD [Apple 2005]. iTunes was designed as a multi-threaded application, with one thread 
determining the decibel level of tracks while the second thread converted the audio. A single-
processor system executed first one thread, then the second thread. On a dual-core processor, the 
two concurrently executing threads were attempting to update the same music catalog without 
explicit synchronization. In other words, the original implementation assumed sequential 
execution of tasks to assure mutually exclusive access without using a synchronization 
mechanism. Similarly, as existing avionics code migrates from a federated system using a cyclic 
executive to an IMA architecture, concurrency race conditions may be encountered that did not 
exist in a federated setting due to strict execution order and dedicated processors. Testing for such 
race conditions may be very difficult. A consistency check of the assumed mutual exclusion 
mechanism for shared data access through sequential execution against the multi-core task 
deployment with concurrent task execution could have discovered this issue. 



 

54 | CMU/SEI-2012-TR-005 

When system components become virtualized, assumptions about physical redundancy will be 
violated. In 1986, the internet, then ARPA-net, was accidentally split into two networks [Zakon 
1993]. All seven New England trunk lines, which had previously been separate physical lines, 
were severed when AT&T suffered a fiber optic cable break that lasted 11 hours. When AT&T 
had converted to fiber optic cable, these physical trunk lines became logical trunk lines on this 
much higher bandwidth connection, losing all physical redundancy [HOC 2001]. The same 
virtualization occurs when embedded software is migrated to ARINC653 partitions or hard drives 
are partitioned into multiple logical drives [Wikipedia 2006].  A collocation consistency check 
could have discovered this inconsistency. 

These additional examples of system-level faults have been reflected in the root cause areas of 
system-level faults identified in Section 3.4. In other words, we see broad applicability for 
architecture-centric, model-based engineering and the VUV method across many application areas 
in the Army and beyond.  
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9 Conclusion 

In this report, we introduced readers to the VUV method for analyzing the impact of platform 
change on embedded systems. We described the VUV method steps and introduced the readers to 
the ADC, which provides guidance for modelers on what problems to model and how to model 
them, based on hands-on experience and real-world research.  

We provided a history of the AADL standard, an overview of what the standard is, and some 
background regarding SEI and Army ASSIP work related to the AADL standard. We concluded 
the report with a discussion of the broad applicability for architecture-centric engineering 
supported by AADL models and the VUV method across the Army and beyond. We provided 
examples that demonstrate the wide range of domains impacted by system failure due to 
architectural mismatch. 

In a pilot case study, we will use the VUV method to analyze the impact of a platform upgrade to 
the Apache helicopter. We will summarize the outcome of the case study and provide an 
assessment of the value of applying the VUV method to analyze the impact of the Apache 
platform upgrade in a separate report.  
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Appendix: Modeling with the SAE AADL 

The SAE AADL standard provides formal modeling concepts for the description and analysis of 
an application system architecture in terms of distinct components and their interactions [Feiler 
2006]. The AADL includes software, hardware, and system component abstractions to specify 
and analyze real-time embedded systems, complex systems of systems, and specialized 
performance capability systems and to map software onto computational hardware elements. The 
AADL is especially effective for model-based analysis and specification of complex real-time 
embedded systems.  

In model-based analysis, the AADL supports the development of a comprehensive architecture 
model of a system. This single representation drives diverse analyses in support of software 
assurance practices throughout the development life cycle. These analyses address top-level 
concerns including requirements, system design, and software architecture. In addition, we can 
use AADL models to specify and validate compliance between the model and the source code. 

SAE AADL: The Language 

The core AADL modeling elements are organized into Components, Interactions, and Properties. 
Components represent distinct logical and physical entities that compose a system. Their external 
interfaces are defined as features of a component type. Their internal structure is defined using 
subcomponent declarations within a component implementation. Modes enable the modeling of 
dynamic reconfigurations of a system, including alternative properties, features, subcomponents, 
calls, and connections.  

Interactions among components are established using explicit connections and software call 
declarations. These connections represent the transfer of control and data through ports; explicitly 
define access to data, buses, and subprograms; and define the exchange of data through 
subprogram parameters. Other component interactions, including the binding of software to 
hardware, are declared explicitly by assigning values to binding properties.  

Properties, applied to various modeling elements, define the characteristics required for a 
complete architectural description, an executable implementation, and comprehensive analyses of 
a system. Values assigned to properties establish specific attributes of components and their 
interactions (e.g., the dispatch protocols supported by a processor), the binding of software 
components to hardware components (e.g., threads bound to processors), and the logistical aspects 
of deploying software (e.g., the name of a software component’s source code file). There are 
standard (predeclared) properties defined within the language. For example, standard properties 
include the execution time for a thread, the speed of a processor, and the smallest independently 
readable and writeable unit of storage of a memory component. In addition, we can define new 
properties and associate them with AADL elements. 

Component Abstractions 

Within the AADL, a component is characterized by its identity (a unique name and runtime 
essence), possible interfaces with other components, distinguishing properties (critical 
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characteristics of a component within its architectural context), and subcomponents and their 
interactions. In defining an architecture, we organize components into hierarchical runtime 
structures that can include dynamic reconfiguration using operational modes and mode 
transitions. 

In addition to interfaces and internal structural elements, we can define other abstractions for 
component and system architectures. For example, abstract flows can be identified and associated 
with specific components and interconnections to perform flow analysis. These additional 
elements can be included through core AADL language capabilities and the specification of a 
supplemental annex language. The component abstractions of the AADL are separated into three 
categories: application software, execution platform (hardware), and composite. We have 
summarized these component categories in Table 9-1. Note that the execution platform category 
represented as “Computer System and Mission Platform.” 

Table 9-1: Component Categories 

Application Software 
thread Active component that can execute concurrently and be organized into thread groups 

thread group Abstraction for logically organizing thread, data, and thread group components within a 
process 

process Protected address space whose boundaries are enforced at runtime 

data Data types and static data in source text  

subprogram Concepts such as call-return and calls-on methods (modeled using a subprogram 
component that represents a callable piece of source code) 

Computer System and Mission Platform 

processor Schedules and executes threads 

memory Stores code and data 

device Sensors, actuators, or other components that interface with the external environment 

bus Interconnects processors, memory, and devices 

virtual processor Virtual machines, partitions, and hierarchical schedulers 

virtual bus Virtual channels and protocols 

Composite 

system Composite components that can consist of software, computer system, and mission 
platform components  

abstract Generic component that can be refined into any of the above component categories 

Interactions 

The AADL standard includes runtime semantics for component interactions including data 
sampling via data ports, message passing via event data ports, event passing via event ports, 
synchronized access to shared components via data access features, and remote service calls via 
subprogram access. Connections define relationships between ports, access features, subprogram 
parameters, and feature groups. Calls define relationships between calling components (threads 
and subprograms) and subprogram interfaces. Bindings of software components to hardware 
components are declared through property associations. We have summarized interactions and 
component features in Table 9-2. 
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Table 9-2: Interactions and Component Features 

Connections 

port Directional exchange of sampled data, events, and messages among components 
between ports or between feature groups of components  

access 
Relationships that enable multiple components to access a common data or bus 
component 

parameter Relationships among data elements associated with subprogram calls 

feature group Interaction between a collection of features represented as a single relationship 

Calls 

subprogram Relationships within component implementations that enable synchronous call/return 
access to subprograms 

Bindings 

binding Relationships that define the mapping of software components, connections, and 
subprogram calls to hardware components 

Properties 

Properties define characteristics for the elements that compose an AADL model. Each property 

has a name and a type. A property type establishes the values that can be assigned to a property.  

There are AADL standard (predeclared) properties and property types. Collectively, these 

standard properties and property types encompass common attributes for the elements of the 

language. For example, a standard property of a port is Required_Connection, which is of 

standard type aadlboolean and has a default value of true. You can use a property association to 

assign the value false to this property for a port, allowing that port to be unconnected.  

The AADL also permits users to define additional properties and property types. These are defined 

in property sets. For example, a new property for system components is declared with a name and a 

type for the property, and that property is applied to all system components in a model. The type 

declared for a new property may be a standard type (e.g., aadlinteger), or a new type that has been 

declared using a property type declaration.  

AADL Annexes  

We can use AADL properties and language extensions to create new and focused architecture 
analyses. Property sets can be declared that enable specialized analyses such as resource 
utilization. With the extension capabilities of the language, we can add additional models and 
properties. 

Several such annexes have been defined as SAE AADL Annex standards. The Error Model 
Annex standard [SAE 2006] allows error sources, component error behavior, and error 
propagation to be associated with AADL models. These annotations can serve as a source for 
Functional Hazard Analysis (FHA), Fault Mode and Effects Analysis (FMEA), and Fault Tree 
Analysis (FTA), as well as reliability and availability analysis. The Behavior Annex standard 
[SAE 2011] supports state-based specifications to be associated with components to characterize 
their interaction behavior, concurrency control behavior, and functional behavior. The ARINC653 
Annex standard [SAE 2011] supports specification of ARINC653 standard compliant 
architectures. The Data Model Annex standard [SAE 2011] supports association of data models 
expressed in other notations into an AADL architecture model. 
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Modeling Application Components 

When modeling an embedded application, we can take two approaches: capturing its architecture 
as depicted in a design document or representing those system elements relevant to evaluating 
specific use scenarios. In the former case, we translate architecture diagrams into an AADL model 
using the graphical editor. The challenge in this case is to pick the appropriate AADL concepts to 
represent the architecture. 

In the following, we outline some factors for consideration in modeling subprograms, threads, 
ports, and processes. 

1. subprograms with the following characteristics 

a. execution time—specifies the time it takes to execute the program running by itself as a 
range between best-case and worst-case 

b. internal flows—specify the control and data flows that go from an input parameter to an 
output parameter of the subprograms 

c. input and output parameters—the parameters passed into the function 

d. input and output events—the parameters where the result of the computation is 
expected 

2. threads with the following characteristics 

a. input/output ports—the input control and data into and out of the threads. These ports 
are then connected to other threads’ ports or to the containing process ports.  

b. activation pattern—specifies whether the thread is activated periodically or only 
activated when an event arrives 

c. periodicity—must be specified if the thread is periodic  

d. deadlines—specify the maximum time that the thread can take to complete its execution 
starting from its activation 

e. subprogram calls—the sequence of calls that are executed every time the thread is 
activated 

f. connections to/from calls—the mapping from the thread ports to the parameters of the 
calls. This mapping is contained in each call. 

g. flows—specify the control and data flow from the thread ports to the subprogram calls 
and between the subprogram calls 

h. assignment of threads to processors—defines where the threads run and how to 
schedule them 

3. ports with the following characteristics 

a. data port—represents communication of most recent state value; it is typically used for 
sampled processing  

b. event port—represents queued communication of events. This port is used for 
triggering thread execution or mode transitions as well as for sampled processing of 
alarms 

c. event data port—represents queued communication of data. This port is used for 
processing of complete message/data streams. 
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4. processes with the following characteristics 

a. input/output ports—connected either to other processes’ ports or to the internal threads’ 
ports. These ports parallel the input/output ports for threads. 

b. flows—represent the control and data flows between the process’ internal threads or 
between the threads and the process’ ports 

c. threads—the internal threads of the process 

d. connections to threads—the connections between the threads’ ports and the thread and 
processes’ ports. Timing constraints on sampled communication by periodic threads is 
specified as immediate, delayed, or sampled connection. Immediate means that data is 
always passed within the same frame by delaying the execution start of the recipient 
thread. Delayed means that passing of the data is always delayed to the next frame. 
Sampled means that the recipient samples data at dispatch time independently of the 
execution of the sending thread. 

Modeling the Computer Platform 

AADL offers the component categories of processor, memory, bus, and their groupings into 
systems to represent a wide range of computer system architectures, as has been demonstrated 
effectively in Computer Structures: Readings and Examples [Bell 1971]. Users can introduce 
different processor, bus, and memory types as abstractions of computer system components. For 
example, a processor type may represent bare processor hardware of an Intel X86 CPU, or it may 
include the operating system software (e.g., Linux). Similarly, bus types represent communication 
hardware and services such as PCI bus or Ethernet with or without different protocol stacks. 
These interconnected components are modeled by bus access connections between the respective 

hardware component and a bus using the system component. 

When defining a processor type, we specify its scheduling policy and its processor speed and 
speed scaling factor relative to a reference processor. We also specify various performance 
parameters such as thread and process context switch time, supported priority levels, memory 
requirements for operating system software, protocol support, and reference to a detailed 
hardware description in a notation such as very high-speed integrated circuit (VHSIC) Hardware 
Design Language (VHDL). When defining a bus type, we specify its bandwidth, transmission 
time parameters, supported hardware component connectivity, provided QoS guarantees, and 
supported protocols. 

Application software is bound to the computer system by binding source code and application 
data to memory. Similarly, application threads are bound to different processors, and port 
connections are bound to different buses. This provides the means to determine the workload on 
memory, buses, and processors based on application data (execution times, memory footprint, and 
communicated data volume).  

We use the virtual processor concept to represent virtual machines such as ARINC653 partitions 
as well as hierarchical schedulers. Partitions also represent fault isolation boundaries. We use the 
virtual bus concept to represent virtual channels and communication protocols. It allows us to 
capture protocol stacks and record QoS properties such as guaranteed delivery, ordered delivery, 
and secure delivery of data. Assumptions about protocols and schedulers, as well as deployment 
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on networks and processors made by the application, are recorded as properties on runtime 
architecture components such as threads and connections. A combination of virtual processor and 
virtual bus can be used in representing security levels and regions. Additional modeling guidance 
can be found in work by Delange [Delange 2009a, 2009b]. 
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Glossary of Acronyms 

Acronym Definition 

AADL Architecture Analysis and Design Language 

AB3 Apache Block Upgrade III 

ADC Architectural Dependencies Catalog 

ADIRU Air Data Inertial Reference Units 

AED Aviation Engineering Directorate 

AMRDEC Aviation and Missile Research Development and Engineering Center 

ARINC Aeronautical Radio Incorporated 

ASIIST Application Specific I/O Integration Support Tool 

ASSIP Army Strategic Software Improvement Program 

ATAM Architecture Tradeoff Analysis Method  

AVSI Aerospace Vehicle Systems Institute 

CC cruise control  

CD compact disk 

COTS commercial off-the-shelf 

CPU central processing unit 

DARPA Defense Advanced Research Project Agency 

DMA direct memory access 

ESC electronic stability control 

FHA Functional Hazard Analysis  

FTA Fault-Tree Analysis 

GAO General Accounting Office 

I/O input and output 

IMA Integrated Modular Avionics 

IV&V Independent Verification and Validation 

MBE model-based engineering 

MIPS Microprocessor without Interlocked Pipeline Stages 

NASA National Aeronautics and Space Administration 

NIST National Institute for Standards and Technology 

OQA operational quality attribute 

OSATE Open Source AADL Tool Environment 

PCI Peripheral Control Interface 

PEO  AVN Program Executive Office Aviation 

POC proof of concept 

RMA Rate Monotonic Analysis 

RT real time 

RTSCE real-time, safety-critical, embedded 

SAE Society of Automotive Engineers 

SAVI System Architecture Virtual Integration 

SEI Software Engineering Institute 

SLOC source lines of code 

SWCET stall-induced worst-case execution time 
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Acronym Definition 

VHDL VHSC Hardware Design Language 

VHSIC Very High Speed Integrated Circuit 

VUV Virtual Upgrade Validation 

WCET worst-case execution time 
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